IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.14735.html
   My bibliography  Save this paper

Generative Machine Learning for Multivariate Equity Returns

Author

Listed:
  • Ruslan Tepelyan
  • Achintya Gopal

Abstract

The use of machine learning to generate synthetic data has grown in popularity with the proliferation of text-to-image models and especially large language models. The core methodology these models use is to learn the distribution of the underlying data, similar to the classical methods common in finance of fitting statistical models to data. In this work, we explore the efficacy of using modern machine learning methods, specifically conditional importance weighted autoencoders (a variant of variational autoencoders) and conditional normalizing flows, for the task of modeling the returns of equities. The main problem we work to address is modeling the joint distribution of all the members of the S&P 500, or, in other words, learning a 500-dimensional joint distribution. We show that this generative model has a broad range of applications in finance, including generating realistic synthetic data, volatility and correlation estimation, risk analysis (e.g., value at risk, or VaR, of portfolios), and portfolio optimization.

Suggested Citation

  • Ruslan Tepelyan & Achintya Gopal, 2023. "Generative Machine Learning for Multivariate Equity Returns," Papers 2311.14735, arXiv.org.
  • Handle: RePEc:arx:papers:2311.14735
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.14735
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D'Avolio, Gene, 2002. "The market for borrowing stock," Journal of Financial Economics, Elsevier, vol. 66(2-3), pages 271-306.
    2. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    3. Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
    4. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    5. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    7. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    8. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2019. "Quant GANs: Deep Generation of Financial Time Series," Papers 1907.06673, arXiv.org, revised Dec 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    2. Nikkin L. Beronilla & Dennis S. Mapa, 2008. "Range-based models in estimating value-at-risk (VaR)," Philippine Review of Economics, University of the Philippines School of Economics and Philippine Economic Society, vol. 45(2), pages 87-99, December.
    3. Nelson, Daniel B., 1996. "Asymptotic filtering theory for multivariate ARCH models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 1-47.
    4. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    5. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    6. Nicolau, Juan Luis & Sharma, Abhinav, 2022. "A review of research into drivers of firm value through event studies in tourism and hospitality: Launching the Annals of Tourism Research curated collection on drivers of firm value through event stu," Annals of Tourism Research, Elsevier, vol. 95(C).
    7. James W. Taylor, 2005. "Generating Volatility Forecasts from Value at Risk Estimates," Management Science, INFORMS, vol. 51(5), pages 712-725, May.
    8. Juan Ángel Lafuente & Jesús Ruiz, 2002. "The New Market Effect on Return and Volatility of Spanish Sector Indexes," Documentos de Trabajo del ICAE 0213, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    9. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    10. Sinha, Bhaskar, 2007. "Modeling Stock Market Volatility in Emerging Markets: Evidence from India," MPRA Paper 102455, University Library of Munich, Germany, revised 2009.
    11. Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2017. "Improving (E)GARCH forecasts with robust realized range measures: Evidence from international markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 631-658, October.
    12. Muhammad Surajo Sanusi, 2017. "Investigating the sources of Black’s leverage effect in oil and gas stocks," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1318812-131, January.
    13. Hira Aftab & A. B. M. Rabiul Alam Beg, 2021. "Does Time Varying Risk Premia Exist in the International Bond Market? An Empirical Evidence from Australian and French Bond Market," IJFS, MDPI, vol. 9(1), pages 1-13, January.
    14. Min-Hsien Chiang & Cheng-Yu Wang, 2002. "The impact of futures trading on spot index volatility: evidence for Taiwan index futures," Applied Economics Letters, Taylor & Francis Journals, vol. 9(6), pages 381-385.
    15. Tomasz Skoczylas, 2015. "Bivariate GARCH models for single asset returns," Working Papers 2015-03, Faculty of Economic Sciences, University of Warsaw.
    16. Siddique, Akhtar R., 2003. "Common asset pricing factors in volatilities and returns in futures markets," Journal of Banking & Finance, Elsevier, vol. 27(12), pages 2347-2368, December.
    17. Leonardo Quero Virla, 2023. "An empirical characterization of volatility in the German stock market," SN Business & Economics, Springer, vol. 3(7), pages 1-19, July.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Kumar, Dilip & Maheswaran, S., 2014. "A new approach to model and forecast volatility based on extreme value of asset prices," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 128-140.
    20. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.14735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.