IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.06745.html
   My bibliography  Save this paper

Dynamic portfolio selection for nonlinear law-dependent preferences

Author

Listed:
  • Zongxia Liang
  • Jianming Xia
  • Fengyi Yuan

Abstract

This paper addresses the portfolio selection problem for nonlinear law-dependent preferences in continuous time, which inherently exhibit time inconsistency. Employing the method of stochastic maximum principle, we establish verification theorems for equilibrium strategies, accommodating both random market coefficients and incomplete markets. We derive the first-order condition (FOC) for the equilibrium strategies, using a notion of functional derivatives with respect to probability distributions. Then, with the help of the FOC we obtain the equilibrium strategies in closed form for two classes of implicitly defined preferences: CRRA and CARA betweenness preferences, with deterministic market coefficients. Finally, to show applications of our theoretical results to problems with random market coefficients, we examine the weighted utility. We reveal that the equilibrium strategy can be described by a coupled system of Quadratic Backward Stochastic Differential Equations (QBSDEs). The well-posedness of this system is generally open but is established under the special structures of our problem.

Suggested Citation

  • Zongxia Liang & Jianming Xia & Fengyi Yuan, 2023. "Dynamic portfolio selection for nonlinear law-dependent preferences," Papers 2311.06745, arXiv.org, revised Nov 2023.
  • Handle: RePEc:arx:papers:2311.06745
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.06745
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    2. Dmitry Kramkov & Sergio Pulido, 2014. "A system of quadratic BSDEs arising in a price impact model," Papers 1408.0916, arXiv.org, revised May 2016.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Guanxing Fu & Chao Zhou, 2023. "Mean field portfolio games," Finance and Stochastics, Springer, vol. 27(1), pages 189-231, January.
    5. Guanxing Fu, 2023. "Mean field portfolio games with consumption," Mathematics and Financial Economics, Springer, volume 17, number 4, June.
    6. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    7. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    8. Chew, Soo Hong, 1983. "A Generalization of the Quasilinear Mean with Applications to the Measurement of Income Inequality and Decision Theory Resolving the Allais Paradox," Econometrica, Econometric Society, vol. 51(4), pages 1065-1092, July.
    9. Min Dai & Hanqing Jin & Steven Kou & Yuhong Xu, 2021. "A Dynamic Mean-Variance Analysis for Log Returns," Management Science, INFORMS, vol. 67(2), pages 1093-1108, February.
    10. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2021. "Consistent Investment of Sophisticated Rank-Dependent Utility Agents in Continuous Time," Post-Print hal-02624308, HAL.
    11. Frei, Christoph, 2014. "Splitting multidimensional BSDEs and finding local equilibria," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2654-2671.
    12. Back, Kerry E., 2017. "Asset Pricing and Portfolio Choice Theory," OUP Catalogue, Oxford University Press, number 9780190241148.
    13. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    14. Dekel, Eddie, 1986. "An axiomatic characterization of preferences under uncertainty: Weakening the independence axiom," Journal of Economic Theory, Elsevier, vol. 40(2), pages 304-318, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zongxia Liang & Jianming Xia & Keyu Zhang, 2023. "Equilibrium stochastic control with implicitly defined objective functions," Papers 2312.15173, arXiv.org, revised Dec 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zongxia Liang & Jianming Xia & Keyu Zhang, 2023. "Equilibrium stochastic control with implicitly defined objective functions," Papers 2312.15173, arXiv.org, revised Dec 2023.
    2. Zhao, Qian & Shen, Yang & Wei, Jiaqin, 2014. "Consumption–investment strategies with non-exponential discounting and logarithmic utility," European Journal of Operational Research, Elsevier, vol. 238(3), pages 824-835.
    3. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    4. Zongxia Liang & Sheng Wang & Jianming Xia & Fengyi Yuan, 2024. "Dynamic portfolio selection under generalized disappointment aversion," Papers 2401.08323, arXiv.org, revised Mar 2024.
    5. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2020. "Consistent Investment of Sophisticated Rank-Dependent Utility Agents in Continuous Time," Working Papers hal-02624308, HAL.
    6. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2020. "Consistent Investment of Sophisticated Rank-Dependent Utility Agents in Continuous Time," Papers 2006.01979, arXiv.org.
    7. Dong-Mei Zhu & Jia-Wen Gu & Feng-Hui Yu & Tak-Kuen Siu & Wai-Ki Ching, 2021. "Optimal pairs trading with dynamic mean-variance objective," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 145-168, August.
    8. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2021. "Consistent Investment of Sophisticated Rank-Dependent Utility Agents in Continuous Time," Post-Print hal-02624308, HAL.
    9. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    10. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    11. Liyuan Wang & Zhiping Chen, 2019. "Stochastic Game Theoretic Formulation for a Multi-Period DC Pension Plan with State-Dependent Risk Aversion," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    12. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    13. Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
    14. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    15. Yu-Jui Huang & Zhenhua Wang, 2020. "Optimal Equilibria for Multi-dimensional Time-inconsistent Stopping Problems," Papers 2006.00754, arXiv.org, revised Jan 2021.
    16. Yu-Jui Huang & Zhou Zhou, 2018. "Strong and Weak Equilibria for Time-Inconsistent Stochastic Control in Continuous Time," Papers 1809.09243, arXiv.org, revised Aug 2019.
    17. Zhao, Qian & Wang, Rongming & Wei, Jiaqin, 2016. "Exponential utility maximization for an insurer with time-inconsistent preferences," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 89-104.
    18. Zongxia Liang & Keyu Zhang, 2024. "A Mean Field Game Approach to Relative Investment-Consumption Games with Habit Formation," Papers 2401.15659, arXiv.org.
    19. Felix Fie{ss}inger & Mitja Stadje, 2023. "Time-Consistent Asset Allocation for Risk Measures in a L\'evy Market," Papers 2305.09471, arXiv.org, revised Jun 2023.
    20. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2021. "Consistent investment of sophisticated rank‐dependent utility agents in continuous time," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 1056-1095, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.06745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.