IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.03927.html
   My bibliography  Save this paper

Fast Empirical Scenarios

Author

Listed:
  • Michael Multerer
  • Paul Schneider
  • Rohan Sen

Abstract

We seek to extract a small number of representative scenarios from large panel data that are consistent with sample moments. Among two novel algorithms, the first identifies scenarios that have not been observed before, and comes with a scenario-based representation of covariance matrices. The second proposal selects important data points from states of the world that have already realized, and are consistent with higher-order sample moment information. Both algorithms are efficient to compute and lend themselves to consistent scenario-based modeling and multi-dimensional numerical integration that can be used for interpretable decision-making under uncertainty. Extensive numerical benchmarking studies and an application in portfolio optimization favor the proposed algorithms.

Suggested Citation

  • Michael Multerer & Paul Schneider & Rohan Sen, 2023. "Fast Empirical Scenarios," Papers 2307.03927, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2307.03927
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.03927
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    2. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    3. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    4. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    5. Saminger-Platz Susanne & Kolesárová Anna & Šeliga Adam & Mesiar Radko & Klement Erich Peter, 2024. "On comprehensive families of copulas involving the three basic copulas and transformations thereof," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    6. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    7. Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.
    8. Tim J. Boonen & Wing Fung Chong & Mario Ghossoub, 2024. "Pareto‐efficient risk sharing in centralized insurance markets with application to flood risk," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 91(2), pages 449-488, June.
    9. Claudia Ceci & Katia Colaneri & Rdiger Frey & Verena Kock, 2019. "Value adjustments and dynamic hedging of reinsurance counterparty risk," Papers 1909.04354, arXiv.org.
    10. Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023. "Vector autoregression models with skewness and heavy tails," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    11. Sundusit Saekow & Phisanu Chiawkhun & Woraphon Yamaka & Nawapon Nakharutai & Parkpoom Phetpradap, 2024. "Estimation of Contagion: Bayesian Model Averaging on Tail Dependence of Mixture Copula," Mathematics, MDPI, vol. 12(21), pages 1-23, October.
    12. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    13. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    14. Xuehai Zhang, 2019. "Value at Risk and Expected Shortfall under General Semi-parametric GARCH models," Working Papers CIE 126, Paderborn University, CIE Center for International Economics.
    15. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    16. Rudiger Frey & Kevin Kurt & Camilla Damian, 2020. "How Safe are European Safe Bonds? An Analysis from the Perspective of Modern Portfolio Credit Risk Models," Papers 2001.11249, arXiv.org, revised Jul 2020.
    17. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    18. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    19. Hirbod Assa & Liyuan Lin & Ruodu Wang, 2022. "Calibrating distribution models from PELVE," Papers 2204.08882, arXiv.org, revised Jun 2023.
    20. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.03927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.