IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.15164.html
   My bibliography  Save this paper

On the Connection between Temperature and Volatility in Ideal Agent Systems

Author

Listed:
  • Christoph J. Borner
  • Ingo Hoffmann
  • John H. Stiebel

Abstract

Models for spin systems known from statistical physics are applied by analogy in econometrics in the form of agent-based models. Researchers suggest that the state variable temperature $T$ corresponds to volatility $\sigma$ in capital market theory problems. To the best of our knowledge, this has not yet been theoretically derived, for example, for an ideal agent system. In the present paper, we derive the exact algebraic relation between $T$ and $\sigma$ for an ideal agent system and discuss implications and limitations.

Suggested Citation

  • Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2023. "On the Connection between Temperature and Volatility in Ideal Agent Systems," Papers 2303.15164, arXiv.org.
  • Handle: RePEc:arx:papers:2303.15164
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.15164
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. Kleinert & X. J. Chen, 2006. "Boltzmann Distribution and Temperature of Stock Markets," Papers physics/0609209, arXiv.org, revised Apr 2007.
    2. Kaizoji, Taisei, 2000. "Speculative bubbles and crashes in stock markets: an interacting-agent model of speculative activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 493-506.
    3. Vincenzo Crescimanna & Luca Di Persio, 2016. "Herd Behavior and Financial Crashes: An Interacting Particle System Approach," Journal of Mathematics, Hindawi, vol. 2016, pages 1-7, February.
    4. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    5. Kozuki, Naoki & Fuchikami, Nobuko, 2003. "Dynamical model of financial markets: fluctuating ‘temperature’ causes intermittent behavior of price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 222-230.
    6. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    7. Kleinert, H. & Chen, X.J., 2007. "Boltzmann distribution and market temperature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 513-518.
    8. Kozaki, M. & Sato, A.-H., 2008. "Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1225-1246.
    9. Marsili, Matteo, 1999. "On the multinomial logit model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 9-15.
    10. Wonseok Oh & Sangyong Jeon, 2007. "Membership Herding and Network Stability in the Open Source Community: The Ising Perspective," Management Science, INFORMS, vol. 53(7), pages 1086-1101, July.
    11. Sebastian M. Krause & Stefan Bornholdt, 2012. "Opinion formation model for markets with a social temperature and fear," Papers 1212.4751, arXiv.org.
    12. de Mattos Neto, Paulo S.G. & Silva, David A. & Ferreira, Tiago A.E. & Cavalcanti, George D.C., 2011. "Market volatility modeling for short time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3444-3453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2024. "A closer look at the chemical potential of an ideal agent system," Papers 2401.09233, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2024. "A closer look at the chemical potential of an ideal agent system," Papers 2401.09233, arXiv.org.
    2. Yue Chen & Xiaojian Niu & Yan Zhang, 2019. "Exploring Contrarian Degree in the Trading Behavior of China's Stock Market," Complexity, Hindawi, vol. 2019, pages 1-12, April.
    3. Yuichi Ikeda, 2020. "An Interacting Agent Model of Economic Crisis," Papers 2001.11843, arXiv.org.
    4. Kristoufek, Ladislav & Vošvrda, Miloslav S., 2016. "Herding, minority game, market clearing and efficient markets in a simple spin model framework," FinMaP-Working Papers 68, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    5. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    6. Massari, Giovanni F. & Giannoccaro, Ilaria & Carbone, Giuseppe, 2019. "Are distrust relationships beneficial for group performance? The influence of the scope of distrust on the emergence of collective intelligence," International Journal of Production Economics, Elsevier, vol. 208(C), pages 343-355.
    7. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    8. Stefan Bornholdt, 2021. "A q-spin Potts model of markets: Gain-loss asymmetry in stock indices as an emergent phenomenon," Papers 2112.06290, arXiv.org.
    9. Horvath, Philip A. & Roos, Kelly R. & Sinha, Amit, 2016. "An Ising spin state explanation for financial asset allocation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 112-116.
    10. Carlo Campajola & Fabrizio Lillo & Daniele Tantari, 2019. "Unveiling the relation between herding and liquidity with trader lead-lag networks," Papers 1909.10807, arXiv.org, revised Mar 2020.
    11. Stein, Julian Alexander Cornelius & Braun, Dieter, 2019. "Stability of a time-homogeneous system of money and antimoney in an agent-based random economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 232-249.
    12. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    13. Sandro Claudio Lera & Didier Sornette, 2015. "Currency target zone modeling: An interplay between physics and economics," Papers 1508.04754, arXiv.org, revised Oct 2015.
    14. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    15. Poitras, Geoffrey, 2018. "The pre-history of econophysics and the history of economics: Boltzmann versus the marginalists," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 89-98.
    16. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    17. Yun-Shi Dai & Ngoc Quang Anh Huynh & Qing-Huan Zheng & Wei-Xing Zhou, 2023. "Correlation structure analysis of the global agricultural futures market," Papers 2310.16849, arXiv.org.
    18. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    19. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    20. Begušić, Stjepan & Kostanjčar, Zvonko & Eugene Stanley, H. & Podobnik, Boris, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 400-406.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.15164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.