IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.02906.html
   My bibliography  Save this paper

A Time Series Approach to Explainability for Neural Nets with Applications to Risk-Management and Fraud Detection

Author

Listed:
  • Marc Wildi
  • Branka Hadji Misheva

Abstract

Artificial intelligence is creating one of the biggest revolution across technology driven application fields. For the finance sector, it offers many opportunities for significant market innovation and yet broad adoption of AI systems heavily relies on our trust in their outputs. Trust in technology is enabled by understanding the rationale behind the predictions made. To this end, the concept of eXplainable AI emerged introducing a suite of techniques attempting to explain to users how complex models arrived at a certain decision. For cross-sectional data classical XAI approaches can lead to valuable insights about the models' inner workings, but these techniques generally cannot cope well with longitudinal data (time series) in the presence of dependence structure and non-stationarity. We here propose a novel XAI technique for deep learning methods which preserves and exploits the natural time ordering of the data.

Suggested Citation

  • Marc Wildi & Branka Hadji Misheva, 2022. "A Time Series Approach to Explainability for Neural Nets with Applications to Risk-Management and Fraud Detection," Papers 2212.02906, arXiv.org.
  • Handle: RePEc:arx:papers:2212.02906
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.02906
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deniz Can Yıldırım & Ismail Hakkı Toroslu & Ugo Fiore, 2021. "Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-36, December.
    2. Nils Bundi & Marc Wildi, 2019. "Bitcoin and market-(in)efficiency: a systematic time series approach," Digital Finance, Springer, vol. 1(1), pages 47-65, November.
    3. Gunho Jung & Sun-Yong Choi & Benjamin Miranda Tabak, 2021. "Forecasting Foreign Exchange Volatility Using Deep Learning Autoencoder-LSTM Techniques," Complexity, Hindawi, vol. 2021, pages 1-16, March.
    4. Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
    5. Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
    6. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    7. Parley Ruogu Yang, 2021. "Forecasting high-frequency financial time series: an adaptive learning approach with the order book data," Papers 2103.00264, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N'yoma Diamond & Grant Perkins, 2022. "Using Intermarket Data to Evaluate the Efficient Market Hypothesis with Machine Learning," Papers 2212.08734, arXiv.org, revised Dec 2022.
    2. Branka Hadji Misheva & Joerg Osterrieder, 2023. "A Hypothesis on Good Practices for AI-based Systems for Financial Time Series Forecasting: Towards Domain-Driven XAI Methods," Papers 2311.07513, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Branka Hadji Misheva & Joerg Osterrieder, 2023. "A Hypothesis on Good Practices for AI-based Systems for Financial Time Series Forecasting: Towards Domain-Driven XAI Methods," Papers 2311.07513, arXiv.org.
    2. Mimansa Rana & Nanxiang Mao & Ming Ao & Xiaohui Wu & Poning Liang & Matloob Khushi, 2021. "Clustering and attention model based for intelligent trading," Papers 2107.06782, arXiv.org, revised Aug 2021.
    3. Yunze Li & Yanan Xie & Chen Yu & Fangxing Yu & Bo Jiang & Matloob Khushi, 2021. "Feature importance recap and stacking models for forex price prediction," Papers 2107.14092, arXiv.org.
    4. Dorien Herremans & Kah Wee Low, 2022. "Forecasting Bitcoin volatility spikes from whale transactions and CryptoQuant data using Synthesizer Transformer models," Papers 2211.08281, arXiv.org.
    5. Dangxing Chen, 2023. "Can I Trust the Explanations? Investigating Explainable Machine Learning Methods for Monotonic Models," Papers 2309.13246, arXiv.org.
    6. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    7. Bastos, João A. & Matos, Sara M., 2022. "Explainable models of credit losses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
    8. Yuze Lu & Hailong Zhang & Qiwen Guo, 2023. "Stock and market index prediction using Informer network," Papers 2305.14382, arXiv.org.
    9. Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
    10. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    11. Jörg Osterrieder & Andrea Barletta, 2019. "Editorial on the Special Issue on Cryptocurrencies," Digital Finance, Springer, vol. 1(1), pages 1-4, November.
    12. Jaydip Sen & Arpit Awad & Aaditya Raj & Gourav Ray & Pusparna Chakraborty & Sanket Das & Subhasmita Mishra, 2022. "Stock Performance Evaluation for Portfolio Design from Different Sectors of the Indian Stock Market," Papers 2208.07166, arXiv.org.
    13. Shima Nabiee & Nader Bagherzadeh, 2023. "Stock Trend Prediction: A Semantic Segmentation Approach," Papers 2303.09323, arXiv.org.
    14. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2021. "Multi-Transformer: A New Neural Network-Based Architecture for Forecasting S&P Volatility," Papers 2109.12621, arXiv.org.
    15. Matej Steinbacher, 2023. "Predicting Stock Price Movement as an Image Classification Problem," Papers 2303.01111, arXiv.org.
    16. Abdellilah Nafia & Abdellah Yousfi & Abdellah Echaoui, 2023. "Equity-Market-Neutral Strategy Portfolio Construction Using LSTM-Based Stock Prediction and Selection: An Application to S&P500 Consumer Staples Stocks," IJFS, MDPI, vol. 11(2), pages 1-48, March.
    17. Ahelegbey, Daniel & Giudici, Paolo & Pediroda, Valentino, 2023. "A network based fintech inclusion platform," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    18. Jaydip Sen & Arup Dasgupta & Partha Pratim Sengupta & Sayantani Roy Choudhury, 2023. "A Comparative Study of Portfolio Optimization Methods for the Indian Stock Market," Papers 2310.14748, arXiv.org.
    19. Jaydip Sen & Ashwin Kumar R S & Geetha Joseph & Kaushik Muthukrishnan & Koushik Tulasi & Praveen Varukolu, 2022. "Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market," Papers 2201.05570, arXiv.org.
    20. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.02906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.