Stock Trend Prediction: A Semantic Segmentation Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhaojie Luo & Xiaojing Cai & Katsuyuki Tanaka & Tetsuya Takiguchi & Takuji Kinkyo & Shigeyuki Hamori, 2019. "Can We Forecast Daily Oil Futures Prices? Experimental Evidence from Convolutional Neural Networks," JRFM, MDPI, vol. 12(1), pages 1-13, January.
- Guosheng Hu & Yuxin Hu & Kai Yang & Zehao Yu & Flood Sung & Zhihong Zhang & Fei Xie & Jianguo Liu & Neil Robertson & Timothy Hospedales & Qiangwei Miemie, 2017. "Deep Stock Representation Learning: From Candlestick Charts to Investment Decisions," Papers 1709.03803, arXiv.org, revised Feb 2018.
- Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
- Rosdyana Mangir Irawan Kusuma & Trang-Thi Ho & Wei-Chun Kao & Yu-Yen Ou & Kai-Lung Hua, 2019. "Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market," Papers 1903.12258, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hongcheng Ding & Xuanze Zhao & Zixiao Jiang & Shamsul Nahar Abdullah & Deshinta Arrova Dewi, 2024. "EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods," Papers 2408.13214, arXiv.org.
- Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
- Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
- Zhiyuan Pei & Jianqi Yan & Jin Yan & Bailing Yang & Ziyuan Li & Lin Zhang & Xin Liu & Yang Zhang, 2024. "A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images," Papers 2410.19291, arXiv.org, revised Oct 2024.
- Xing Wang & Yijun Wang & Bin Weng & Aleksandr Vinel, 2020. "Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction with Representation Learning and Temporal Convolutional Network," Papers 2010.01197, arXiv.org.
- Matej Steinbacher, 2023. "Predicting Stock Price Movement as an Image Classification Problem," Papers 2303.01111, arXiv.org.
- Tristan Lim, 2024. "Predictive crypto-asset automated market maker architecture for decentralized finance using deep reinforcement learning," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
- Opeyemi Sheu Alamu & Md Kamrul Siam, 2024. "Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals," Papers 2410.07220, arXiv.org.
- Adrian Millea, 2021. "Deep Reinforcement Learning for Trading—A Critical Survey," Data, MDPI, vol. 6(11), pages 1-25, November.
- Joy Dip Das & Ruppa K. Thulasiram & Christopher Henry & Aerambamoorthy Thavaneswaran, 2024. "Encoder–Decoder Based LSTM and GRU Architectures for Stocks and Cryptocurrency Prediction," JRFM, MDPI, vol. 17(5), pages 1-23, May.
- Anindya Sarkar & G. Vadivu, 2025. "An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model," Papers 2503.22192, arXiv.org.
- Iqbal Murtza & Ayesha Saadia & Rabia Basri & Azhar Imran & Abdullah Almuhaimeed & Abdulkareem Alzahrani, 2022. "Forex Investment Optimization Using Instantaneous Stochastic Gradient Ascent—Formulation of an Adaptive Machine Learning Approach," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
- Yugo Fujimoto & Kei Nakagawa & Kentaro Imajo & Kentaro Minami, 2022. "Uncertainty Aware Trader-Company Method: Interpretable Stock Price Prediction Capturing Uncertainty," Papers 2210.17030, arXiv.org, revised Nov 2022.
- Cheng Zhang & Nilam Nur Amir Sjarif & Roslina Ibrahim, 2023. "Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022," Papers 2305.04811, arXiv.org, revised Sep 2023.
- Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
- Xiaodong Zhang & Suhui Liu & Xin Zheng, 2021. "Stock Price Movement Prediction Based on a Deep Factorization Machine and the Attention Mechanism," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
- Jaideep Singh & Matloob Khushi, 2021. "Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating," Papers 2103.09106, arXiv.org.
- Yunze Li & Yanan Xie & Chen Yu & Fangxing Yu & Bo Jiang & Matloob Khushi, 2021. "Feature importance recap and stacking models for forex price prediction," Papers 2107.14092, arXiv.org.
- Mimansa Rana & Nanxiang Mao & Ming Ao & Xiaohui Wu & Poning Liang & Matloob Khushi, 2021. "Clustering and attention model based for intelligent trading," Papers 2107.06782, arXiv.org, revised Aug 2021.
- Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-04-17 (Big Data)
- NEP-CMP-2023-04-17 (Computational Economics)
- NEP-DES-2023-04-17 (Economic Design)
- NEP-FMK-2023-04-17 (Financial Markets)
- NEP-MAC-2023-04-17 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.09323. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.