IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.02199.html
   My bibliography  Save this paper

ABSNFT: Securitization and Repurchase Scheme for Non-Fungible Tokens Based on Game Theoretical Analysis

Author

Listed:
  • Hongyin Chen
  • Yukun Cheng
  • Xiaotie Deng
  • Wenhan Huang
  • Linxuan Rong

Abstract

The Non-Fungible Token (NFT) is viewed as one of the important applications of blockchain technology. Although NFT has a large market scale and multiple practical standards, several limitations of the existing mechanism in NFT markets exist. This work proposes a novel securitization and repurchase scheme for NFT to overcome these limitations. We first provide an Asset-Backed Securities (ABS) solution to settle the limitations of non-fungibility of NFT. Our securitization design aims to enhance the liquidity of NFTs and enable Oracles and Automatic Market Makers (AMMs) for NFTs. Then we propose a novel repurchase protocol for a participant owing a portion of NFT to repurchase other shares to obtain the complete ownership. As participants may strategically bid during the acquisition process, our repurchase process is formulated as a Stackelberg game to explore the equilibrium prices. We also provide solutions to handle difficulties at market such as budget constraints and lazy bidders.

Suggested Citation

  • Hongyin Chen & Yukun Cheng & Xiaotie Deng & Wenhan Huang & Linxuan Rong, 2022. "ABSNFT: Securitization and Repurchase Scheme for Non-Fungible Tokens Based on Game Theoretical Analysis," Papers 2202.02199, arXiv.org, revised Jul 2022.
  • Handle: RePEc:arx:papers:2202.02199
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.02199
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guillermo Angeris & Tarun Chitra, 2020. "Improved Price Oracles: Constant Function Market Makers," Papers 2003.10001, arXiv.org, revised Jun 2020.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jason Milionis & Dean Hirsch & Andy Arditi & Pranav Garimidi, 2022. "A Framework for Single-Item NFT Auction Mechanism Design," Papers 2209.11293, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Estelle Sterrett & Waylon Jepsen & Evan Kim, 2022. "Replicating Portfolios: Constructing Permissionless Derivatives," Papers 2205.09890, arXiv.org, revised Jun 2022.
    2. Zhimeng Yang & Ariah Klages-Mundt & Lewis Gudgeon, 2023. "Oracle Counterpoint: Relationships between On-chain and Off-chain Market Data," Papers 2303.16331, arXiv.org, revised Jul 2023.
    3. Vincent Gramlich & Tobias Guggenberger & Marc Principato & Benjamin Schellinger & Nils Urbach, 2023. "A multivocal literature review of decentralized finance: Current knowledge and future research avenues," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-37, December.
    4. Matthias Nadler & Felix Bekemeier & Fabian Schar, 2022. "DeFi Risk Transfer: Towards A Fully Decentralized Insurance Protocol," Papers 2212.10308, arXiv.org.
    5. Robin Fritsch, 2021. "Concentrated Liquidity in Automated Market Makers," Papers 2110.01368, arXiv.org.
    6. Raphael Auer & Bernhard Haslhofer & Stefan Kitzler & Pietro Saggese & Friedhelm Victor, 2023. "The Technology of Decentralized Finance (DeFi)," BIS Working Papers 1066, Bank for International Settlements.
    7. Guillermo Angeris & Akshay Agrawal & Alex Evans & Tarun Chitra & Stephen Boyd, 2021. "Constant Function Market Makers: Multi-Asset Trades via Convex Optimization," Papers 2107.12484, arXiv.org.
    8. Alex Evans, 2020. "Liquidity Provider Returns in Geometric Mean Markets," Papers 2006.08806, arXiv.org, revised Jul 2020.
    9. Kshitij Kulkarni & Theo Diamandis & Tarun Chitra, 2022. "Towards a Theory of Maximal Extractable Value I: Constant Function Market Makers," Papers 2207.11835, arXiv.org, revised Apr 2023.
    10. Maxim Bichuch & Zachary Feinstein, 2022. "Axioms for Automated Market Makers: A Mathematical Framework in FinTech and Decentralized Finance," Papers 2210.01227, arXiv.org, revised Aug 2023.
    11. Dev Churiwala & Bhaskar Krishnamachari, 2022. "QLAMMP: A Q-Learning Agent for Optimizing Fees on Automated Market Making Protocols," Papers 2211.14977, arXiv.org.
    12. Sam M. Werner & Daniel Perez & Lewis Gudgeon & Ariah Klages-Mundt & Dominik Harz & William J. Knottenbelt, 2021. "SoK: Decentralized Finance (DeFi)," Papers 2101.08778, arXiv.org, revised Sep 2022.
    13. Vijay Mohan, 2022. "Automated market makers and decentralized exchanges: a DeFi primer," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-48, December.
    14. Kaihua Qin & Liyi Zhou & Yaroslav Afonin & Ludovico Lazzaretti & Arthur Gervais, 2021. "CeFi vs. DeFi -- Comparing Centralized to Decentralized Finance," Papers 2106.08157, arXiv.org, revised Jun 2021.
    15. Guillermo Angeris & Alex Evans & Tarun Chitra, 2021. "Replicating Monotonic Payoffs Without Oracles," Papers 2111.13740, arXiv.org.
    16. Hamed Amini & Maxim Bichuch & Zachary Feinstein, 2023. "Decentralized Prediction Markets and Sports Books," Papers 2307.08768, arXiv.org, revised Aug 2023.
    17. Guillermo Angeris & Tarun Chitra & Alex Evans & Stephen Boyd, 2022. "Optimal Routing for Constant Function Market Makers," Papers 2204.05238, arXiv.org.
    18. Davide Strepparava & Federico Rosato & Lorenzo Nespoli & Vasco Medici, 2022. "Privacy and Auditability in the Local Energy Market of an Energy Community with Homomorphic Encryption," Energies, MDPI, vol. 15(15), pages 1-14, July.
    19. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    20. Tarun Chitra & Alex Evans, 2020. "Why Stake When You Can Borrow?," Papers 2006.11156, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.02199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.