IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.02916.html
   My bibliography  Save this paper

3D Tensor-based Deep Learning Models for Predicting Option Price

Author

Listed:
  • Muyang Ge
  • Shen Zhou
  • Shijun Luo
  • Boping Tian

Abstract

Option pricing is a significant problem for option risk management and trading. In this article, we utilize a framework to present financial data from different sources. The data is processed and represented in a form of 2D tensors in three channels. Furthermore, we propose two deep learning models that can deal with 3D tensor data. Experiments performed on the Chinese market option dataset prove the practicability of the proposed strategies over commonly used ways, including B-S model and vector-based LSTM.

Suggested Citation

  • Muyang Ge & Shen Zhou & Shijun Luo & Boping Tian, 2021. "3D Tensor-based Deep Learning Models for Predicting Option Price," Papers 2106.02916, arXiv.org, revised Sep 2021.
  • Handle: RePEc:arx:papers:2106.02916
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.02916
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A Itkin, 2019. "Deep learning calibration of option pricing models: some pitfalls and solutions," Papers 1906.03507, arXiv.org.
    2. Nikola Gradojevic & Ramazan Gencay & Dragan Kukolj, 2009. "Option Pricing with Modular Neural Networks," Working Paper series 32_09, Rimini Centre for Economic Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kavitha Rani Balmuri & Srinivas Konda & Wen-Cheng Lai & Parameshachari Bidare Divakarachari & Kavitha Malali Vishveshwarappa Gowda & Hemalatha Kivudujogappa Lingappa, 2022. "A Long Short-Term Memory Network-Based Radio Resource Management for 5G Network," Future Internet, MDPI, vol. 14(6), pages 1-20, June.
    2. Devi Munandar & Budi Nurani Ruchjana & Atje Setiawan Abdullah & Hilman Ferdinandus Pardede, 2023. "Literature Review on Integrating Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) and Deep Neural Networks in Machine Learning for Climate Forecasting," Mathematics, MDPI, vol. 11(13), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    2. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    3. Yan Liu & Xiong Zhang, 2023. "Option Pricing Using LSTM: A Perspective of Realized Skewness," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    4. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    5. Hammad Siddiqi & Sajid Anwar, 2020. "The Pricing Kernel Puzzle: A Real Phenomenon or a Statistical Artifact?," International Review of Finance, International Review of Finance Ltd., vol. 20(2), pages 485-491, June.
    6. Peter Carr & Andrey Itkin & Sasha Stoikov, 2019. "A model-free backward and forward nonlinear PDEs for implied volatility," Papers 1907.07305, arXiv.org.
    7. Dragan Kukolj & Nikola Gradojevic & Camillo Lento, 2012. "Improving Non-Parametric Option Pricing during the Financial Crisis," Working Paper series 35_12, Rimini Centre for Economic Analysis.
    8. Joseph L. Breeden & Eugenia Leonova, 2021. "Creating Unbiased Machine Learning Models by Design," JRFM, MDPI, vol. 14(11), pages 1-15, November.
    9. Ortíz Arango Francisco & Cabrera Llanos Agustín Ignacio & López Herrera Francisco, 2013. "Pronóstico de los índices accionarios DAX y S&P 500 con redes neuronales diferenciales," Contaduría y Administración, Accounting and Management, vol. 58(3), pages 203-225, julio-sep.
    10. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    11. Fei Chen & Charles Sutcliffe, 2012. "Pricing And Hedging Short Sterling Options Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 128-149, April.
    12. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    13. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
    14. Fabio Baschetti & Giacomo Bormetti & Pietro Rossi, 2023. "Deep calibration with random grids," Papers 2306.11061, arXiv.org, revised Jan 2024.
    15. Marc Chataigner & St'ephane Cr'epey & Matthew Dixon, 2020. "Deep Local Volatility," Papers 2007.10462, arXiv.org.
    16. Kentaro Hoshisashi & Carolyn E. Phelan & Paolo Barucca, 2023. "No-Arbitrage Deep Calibration for Volatility Smile and Skewness," Papers 2310.16703, arXiv.org, revised Jan 2024.
    17. Andrew Na & Meixin Zhang & Justin Wan, 2023. "Computing Volatility Surfaces using Generative Adversarial Networks with Minimal Arbitrage Violations," Papers 2304.13128, arXiv.org, revised Dec 2023.
    18. Ali Hirsa & Weilong Fu, 2020. "An unsupervised deep learning approach in solving partial integro-differential equations," Papers 2006.15012, arXiv.org, revised Dec 2020.
    19. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    20. Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch, 2020. "Solving path dependent PDEs with LSTM networks and path signatures," Papers 2011.10630, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.02916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.