IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.07285.html
   My bibliography  Save this paper

Double/Debiased Machine Learning for Dynamic Treatment Effects via g-Estimation

Author

Listed:
  • Greg Lewis
  • Vasilis Syrgkanis

Abstract

We consider the estimation of treatment effects in settings when multiple treatments are assigned over time and treatments can have a causal effect on future outcomes or the state of the treated unit. We propose an extension of the double/debiased machine learning framework to estimate the dynamic effects of treatments, which can be viewed as a Neyman orthogonal (locally robust) cross-fitted version of $g$-estimation in the dynamic treatment regime. Our method applies to a general class of non-linear dynamic treatment models known as Structural Nested Mean Models and allows the use of machine learning methods to control for potentially high dimensional state variables, subject to a mean square error guarantee, while still allowing parametric estimation and construction of confidence intervals for the structural parameters of interest. These structural parameters can be used for off-policy evaluation of any target dynamic policy at parametric rates, subject to semi-parametric restrictions on the data generating process. Our work is based on a recursive peeling process, typical in $g$-estimation, and formulates a strongly convex objective at each stage, which allows us to extend the $g$-estimation framework in multiple directions: i) to provide finite sample guarantees, ii) to estimate non-linear effect heterogeneity with respect to fixed unit characteristics, within arbitrary function spaces, enabling a dynamic analogue of the RLearner algorithm for heterogeneous effects, iii) to allow for high-dimensional sparse parameterizations of the target structural functions, enabling automated model selection via a recursive lasso algorithm. We also provide guarantees for data stemming from a single treated unit over a long horizon and under stationarity conditions.

Suggested Citation

  • Greg Lewis & Vasilis Syrgkanis, 2020. "Double/Debiased Machine Learning for Dynamic Treatment Effects via g-Estimation," Papers 2002.07285, arXiv.org, revised Jun 2021.
  • Handle: RePEc:arx:papers:2002.07285
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.07285
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    2. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiafeng Chen & David M. Ritzwoller, 2021. "Semiparametric Estimation of Long-Term Treatment Effects," Papers 2107.14405, arXiv.org, revised Aug 2023.
    2. Lewbel, Arthur & Choi, Jin Young & Zhou, Zhuzhu, 2023. "Over-identified Doubly Robust identification and estimation," Journal of Econometrics, Elsevier, vol. 235(1), pages 25-42.
    3. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
    4. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    5. Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects," Papers 2112.14249, arXiv.org, revised Mar 2024.
    6. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    8. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    9. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    10. Görg Holger & Marchal Léa, 2019. "Die Effekte deutscher Direktinvestitionen im Empfängerland vor dem Hintergrund des Leistungsbilanzüberschusses: Empirische Evidenz mit Mikrodaten für Frankreich," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 20(1), pages 53-69, June.
    11. Tran Linh & Petersen Maya & Schwab Joshua & van der Laan Mark J., 2023. "Robust variance estimation and inference for causal effect estimation," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-27, January.
    12. Léa Marchal & Clément Nedoncelle, 2019. "Immigrants, occupations and firm export performance," Review of International Economics, Wiley Blackwell, vol. 27(5), pages 1480-1509, November.
    13. Hisaki Kono & Yasuyuki Sawada & Abu S. Shonchoy, 2016. "DVD-based Distance-learning Program for University Entrance Exams: Experimental Evidence from Rural Bangladesh," CIRJE F-Series CIRJE-F-1027, CIRJE, Faculty of Economics, University of Tokyo.
    14. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.
    15. Takahiro Hoshino & Yuya Shimizu, 2019. "Doubly Robust-type Estimation of Population Moments and Parameters in Biased Sampling," Keio-IES Discussion Paper Series 2019-006, Institute for Economics Studies, Keio University.
    16. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    18. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    19. Uysal, S. Derya, 2013. "Doubly Robust Estimation of Causal Effects with Multivalued Treatments," Economics Series 297, Institute for Advanced Studies.
    20. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.07285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.