IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.11003.html
   My bibliography  Save this paper

Learning bounds for doubly-robust covariate shift adaptation

Author

Listed:
  • Jeonghwan Lee
  • Cong Ma

Abstract

Distribution shift between the training domain and the test domain poses a key challenge for modern machine learning. An extensively studied instance is the \emph{covariate shift}, where the marginal distribution of covariates differs across domains, while the conditional distribution of outcome remains the same. The doubly-robust (DR) estimator, recently introduced by \cite{kato2023double}, combines the density ratio estimation with a pilot regression model and demonstrates asymptotic normality and $\sqrt{n}$-consistency, even when the pilot estimates converge slowly. However, the prior arts has focused exclusively on deriving asymptotic results and has left open the question of non-asymptotic guarantees for the DR estimator. This paper establishes the first non-asymptotic learning bounds for the DR covariate shift adaptation. Our main contributions are two-fold: (\romannumeral 1) We establish \emph{structure-agnostic} high-probability upper bounds on the excess target risk of the DR estimator that depend only on the $L^2$-errors of the pilot estimates and the Rademacher complexity of the model class, without assuming specific procedures to obtain the pilot estimate, and (\romannumeral 2) under \emph{well-specified parameterized models}, we analyze the DR covariate shift adaptation based on modern techniques for non-asymptotic analysis of MLE, whose key terms governed by the Fisher information mismatch term between the source and target distributions. Together, these findings bridge asymptotic efficiency properties and a finite-sample out-of-distribution generalization bounds, providing a comprehensive theoretical underpinnings for the DR covariate shift adaptation.

Suggested Citation

  • Jeonghwan Lee & Cong Ma, 2025. "Learning bounds for doubly-robust covariate shift adaptation," Papers 2511.11003, arXiv.org.
  • Handle: RePEc:arx:papers:2511.11003
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.11003
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.11003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.