IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.11003.html

Learning bounds for doubly-robust covariate shift adaptation

Author

Listed:
  • Jeonghwan Lee
  • Cong Ma

Abstract

Distribution shift between the training domain and the test domain poses a key challenge for modern machine learning. An extensively studied instance is the \emph{covariate shift}, where the marginal distribution of covariates differs across domains, while the conditional distribution of outcome remains the same. The doubly-robust (DR) estimator, recently introduced by \cite{kato2023double}, combines the density ratio estimation with a pilot regression model and demonstrates asymptotic normality and $\sqrt{n}$-consistency, even when the pilot estimates converge slowly. However, the prior arts has focused exclusively on deriving asymptotic results and has left open the question of non-asymptotic guarantees for the DR estimator. This paper establishes the first non-asymptotic learning bounds for the DR covariate shift adaptation. Our main contributions are two-fold: (\romannumeral 1) We establish \emph{structure-agnostic} high-probability upper bounds on the excess target risk of the DR estimator that depend only on the $L^2$-errors of the pilot estimates and the Rademacher complexity of the model class, without assuming specific procedures to obtain the pilot estimate, and (\romannumeral 2) under \emph{well-specified parameterized models}, we analyze the DR covariate shift adaptation based on modern techniques for non-asymptotic analysis of MLE, whose key terms governed by the Fisher information mismatch term between the source and target distributions. Together, these findings bridge asymptotic efficiency properties and a finite-sample out-of-distribution generalization bounds, providing a comprehensive theoretical underpinnings for the DR covariate shift adaptation.

Suggested Citation

  • Jeonghwan Lee & Cong Ma, 2025. "Learning bounds for doubly-robust covariate shift adaptation," Papers 2511.11003, arXiv.org.
  • Handle: RePEc:arx:papers:2511.11003
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.11003
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jikai Jin & Lester Mackey & Vasilis Syrgkanis, 2025. "It's Hard to Be Normal: The Impact of Noise on Structure-agnostic Estimation," Papers 2507.02275, arXiv.org, revised Nov 2025.
    2. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    4. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    5. Masashi Sugiyama & Taiji Suzuki & Shinichi Nakajima & Hisashi Kashima & Paul Bünau & Motoaki Kawanabe, 2008. "Direct importance estimation for covariate shift adaptation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 699-746, December.
    6. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    7. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    8. Dylan J. Foster & Vasilis Syrgkanis, 2019. "Orthogonal Statistical Learning," Papers 1901.09036, arXiv.org, revised Jun 2023.
    9. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    10. Masashi Sugiyama & Taiji Suzuki & Takafumi Kanamori, 2012. "Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 1009-1044, October.
    11. V Chernozhukov & W K Newey & R Singh, 2023. "A simple and general debiased machine learning theorem with finite-sample guarantees," Biometrika, Biometrika Trust, vol. 110(1), pages 257-264.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jikai Jin & Vasilis Syrgkanis, 2024. "Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation," Papers 2402.14264, arXiv.org, revised Jun 2025.
    2. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    3. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
    4. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    5. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    6. Sasaki, Yuya & Ura, Takuya, 2023. "Estimation and inference for policy relevant treatment effects," Journal of Econometrics, Elsevier, vol. 234(2), pages 394-450.
    7. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
    8. Retsef Levi & Elisabeth Paulson & Georgia Perakis & Emily Zhang, 2024. "Heterogeneous Treatment Effects in Panel Data," Papers 2406.05633, arXiv.org.
    9. Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression," Papers 2112.14249, arXiv.org, revised May 2025.
    10. Justin Whitehouse & Morgane Austern & Vasilis Syrgkanis, 2025. "Inference on Optimal Policy Values and Other Irregular Functionals via Smoothing," Papers 2507.11780, arXiv.org.
    11. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    13. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    15. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    16. Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
    17. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Susan Athey & Guido Imbens & Zhaonan Qu & Davide Viviano, 2025. "Triply Robust Panel Estimators," Papers 2508.21536, arXiv.org, revised Sep 2025.
    19. Esfandiar Maasoumi & Jianqiu Wang & Zhuo Wang & Ke Wu, 2024. "Identifying factors via automatic debiased machine learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 438-461, April.
    20. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.11003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.