IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2001.11214.html
   My bibliography  Save this paper

Nonparametric sign prediction of high-dimensional correlation matrix coefficients

Author

Listed:
  • Christian Bongiorno
  • Damien Challet

Abstract

We introduce a method to predict which correlation matrix coefficients are likely to change their signs in the future in the high-dimensional regime, i.e. when the number of features is larger than the number of samples per feature. The stability of correlation signs, two-by-two relationships, is found to depend on three-by-three relationships inspired by Heider social cohesion theory in this regime. We apply our method to US and Hong Kong equities historical data to illustrate how the structure of correlation matrices influences the stability of the sign of its coefficients.

Suggested Citation

  • Christian Bongiorno & Damien Challet, 2020. "Nonparametric sign prediction of high-dimensional correlation matrix coefficients," Papers 2001.11214, arXiv.org.
  • Handle: RePEc:arx:papers:2001.11214
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2001.11214
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marco Bardoscia & Stefano Battiston & Fabio Caccioli & Guido Caldarelli, 2016. "Pathways towards instability in financial networks," Papers 1602.05883, arXiv.org, revised Feb 2017.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Christian Borghesi & Matteo Marsili & Salvatore Miccich`e, 2007. "Emergence of time-horizon invariant correlation structure in financial returns by subtraction of the market mode," Papers physics/0702106, arXiv.org.
    4. Claudio Altafini, 2012. "Dynamics of Opinion Forming in Structurally Balanced Social Networks," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    5. Matteo Marsili, 2002. "Dissecting financial markets: Sectors and states," Papers cond-mat/0207156, arXiv.org.
    6. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    7. Matteo Marsili, 2002. "Dissecting financial markets: sectors and states," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 297-302.
    8. Joel Bun & Romain Allez & Jean-Philippe Bouchaud & Marc Potters, 2015. "Rotational invariant estimator for general noisy matrices," Papers 1502.06736, arXiv.org, revised Oct 2016.
    9. T. Tony Cai & Weidong Liu, 2016. "Large-Scale Multiple Testing of Correlations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 229-240, March.
    10. Joël Bun & Jean-Philippe Bouchaud & Marc Potters, 2017. "Cleaning large correlation matrices: tools from random matrix theory," Post-Print hal-01491304, HAL.
    11. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    12. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," Papers 1504.00590, arXiv.org.
    13. Giuseppe Buccheri & Stefano Marmi & Rosario N. Mantegna, 2013. "Evolution of correlation structure of industrial indices of US equity markets," Papers 1306.4769, arXiv.org.
    14. Michele Tumminello & Salvatore Miccichè & Fabrizio Lillo & Jyrki Piilo & Rosario N Mantegna, 2011. "Statistically Validated Networks in Bipartite Complex Systems," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2001.11214. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.