IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1905.04964.html
   My bibliography  Save this paper

Exogenous Rewards for Promoting Cooperation in Scale-Free Networks

Author

Listed:
  • Theodor Cimpeanu
  • The Anh Han
  • Francisco C. Santos

Abstract

The design of mechanisms that encourage pro-social behaviours in populations of self-regarding agents is recognised as a major theoretical challenge within several areas of social, life and engineering sciences. When interference from external parties is considered, several heuristics have been identified as capable of engineering a desired collective behaviour at a minimal cost. However, these studies neglect the diverse nature of contexts and social structures that characterise real-world populations. Here we analyse the impact of diversity by means of scale-free interaction networks with high and low levels of clustering, and test various interference mechanisms using simulations of agents facing a cooperative dilemma. Our results show that interference on scale-free networks is not trivial and that distinct levels of clustering react differently to each interference mechanism. As such, we argue that no tailored response fits all scale-free networks and present which mechanisms are more efficient at fostering cooperation in both types of networks. Finally, we discuss the pitfalls of considering reckless interference mechanisms.

Suggested Citation

  • Theodor Cimpeanu & The Anh Han & Francisco C. Santos, 2019. "Exogenous Rewards for Promoting Cooperation in Scale-Free Networks," Papers 1905.04964, arXiv.org, revised May 2019.
  • Handle: RePEc:arx:papers:1905.04964
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1905.04964
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    2. Martin A. Nowak & Karl Sigmund, 2005. "Evolution of indirect reciprocity," Nature, Nature, vol. 437(7063), pages 1291-1298, October.
    3. Karl Sigmund & Hannelore De Silva & Arne Traulsen & Christoph Hauert, 2010. "Social learning promotes institutions for governing the commons," Nature, Nature, vol. 466(7308), pages 861-863, August.
    4. Vítor V. Vasconcelos & Francisco C. Santos & Jorge M. Pacheco, 2013. "A bottom-up institutional approach to cooperative governance of risky commons," Nature Climate Change, Nature, vol. 3(9), pages 797-801, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tetsushi Ohdaira, 2021. "Cooperation evolves by the payoff-difference-based probabilistic reward," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-8, November.
    2. Cimpeanu, Theodor & Di Stefano, Alessandro & Perret, Cedric & Han, The Anh, 2023. "Social diversity reduces the complexity and cost of fostering fairness," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojie Chen & Attila Szolnoki, 2018. "Punishment and inspection for governing the commons in a feedback-evolving game," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-15, July.
    2. Ding, Rui & Wang, Xianjia & Liu, Yang & Zhao, Jinhua & Gu, Cuiling, 2023. "Evolutionary games with environmental feedbacks under an external incentive mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Flávio L Pinheiro & Vítor V Vasconcelos & Francisco C Santos & Jorge M Pacheco, 2014. "Evolution of All-or-None Strategies in Repeated Public Goods Dilemmas," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-5, November.
    4. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    5. Faqi Du & Feng Fu, 2011. "Partner Selection Shapes the Strategic and Topological Evolution of Cooperation," Dynamic Games and Applications, Springer, vol. 1(3), pages 354-369, September.
    6. Jeromos Vukov & Flávio L Pinheiro & Francisco C Santos & Jorge M Pacheco, 2013. "Reward from Punishment Does Not Emerge at All Costs," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-6, January.
    7. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    8. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    9. Guo, H. & Jia, D. & Sendiña-Nadal, I. & Zhang, M. & Wang, Z. & Li, X. & Alfaro-Bittner, K. & Moreno, Y. & Boccaletti, S., 2021. "Evolutionary games on simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Li, Yixiao & Jin, Xiaogang & Su, Xianchuang & Kong, Fansheng & Peng, Chengbin, 2010. "Cooperation and charity in spatial public goods game under different strategy update rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1090-1098.
    11. Lv, Shaojie & Song, Feifei, 2022. "Particle swarm intelligence and the evolution of cooperation in the spatial public goods game with punishment," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    12. Yan, Fang & Hou, Xiaorong & Tian, Tingting & Chen, Xiaojie, 2023. "Nonlinear model reference adaptive control approach for governance of the commons in a feedback-evolving game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Quan, Ji & Nie, Jiacheng & Chen, Wenman & Wang, Xianjia, 2022. "Keeping or reversing social norms promote cooperation by enhancing indirect reciprocity," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Dimitris Iliopoulos & Arend Hintze & Christoph Adami, 2010. "Critical Dynamics in the Evolution of Stochastic Strategies for the Iterated Prisoner's Dilemma," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-8, October.
    15. Isamu Okada, 2020. "A Review of Theoretical Studies on Indirect Reciprocity," Games, MDPI, vol. 11(3), pages 1-17, July.
    16. Rezaei, Golriz & Kirley, Michael, 2012. "Dynamic social networks facilitate cooperation in the N-player Prisoner’s Dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6199-6211.
    17. V'itor V. Vasconcelos & Phillip M. Hannam & Simon A. Levin & Jorge M. Pacheco, 2019. "Coalition-structured governance improves cooperation to provide public goods," Papers 1910.11337, arXiv.org.
    18. Zhuang, Qian & Wang, Dong & Fan, Ying & Di, Zengru, 2012. "Evolution of cooperation in a heterogeneous population with influential individuals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1735-1741.
    19. Wang, Xianjia & Ding, Rui & Zhao, Jinhua & Gu, Cuiling, 2022. "The rise and fall of cooperation in populations with multiple groups," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    20. Qu, Xinglong & Zhou, Changli & Cao, Zhigang & Yang, Xiaoguang, 2016. "Conditional dissociation as a punishment mechanism in the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 215-223.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.04964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.