IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.09427.html
   My bibliography  Save this paper

General multilevel Monte Carlo methods for pricing discretely monitored Asian options

Author

Listed:
  • Nabil Kahale

Abstract

We describe general multilevel Monte Carlo methods that estimate the price of an Asian option monitored at $m$ fixed dates. Our approach yields unbiased estimators with standard deviation $O(\epsilon)$ in $O(m + (1/\epsilon)^{2})$ expected time for a variety of processes including the Black-Scholes model, Merton's jump-diffusion model, the Square-Root diffusion model, Kou's double exponential jump-diffusion model, the variance gamma and NIG exponential Levy processes and, via the Milstein scheme, processes driven by scalar stochastic differential equations. Using the Euler scheme, our approach estimates the Asian option price with root mean square error $O(\epsilon)$ in $O(m+(\ln(\epsilon)/\epsilon)^{2})$ expected time for processes driven by multidimensional stochastic differential equations. Numerical experiments confirm that our approach outperforms the conventional Monte Carlo method by a factor of order $m$.

Suggested Citation

  • Nabil Kahale, 2018. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," Papers 1805.09427, arXiv.org, revised Sep 2018.
  • Handle: RePEc:arx:papers:1805.09427
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.09427
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shiraya, Kenichiro & Takahashi, Akihiko, 2017. "A general control variate method for multi-dimensional SDEs: An application to multi-asset options under local stochastic volatility with jumps models in finance," European Journal of Operational Research, Elsevier, vol. 258(1), pages 358-371.
    2. Michael B. Giles & Yuan Xia, 2017. "Multilevel Monte Carlo for exponential Lévy models," Finance and Stochastics, Springer, vol. 21(4), pages 995-1026, October.
    3. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    4. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    5. Michael B. Giles & Lukasz Szpruch, 2012. "Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without L\'{e}vy area simulation," Papers 1202.6283, arXiv.org, revised May 2014.
    6. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    7. Cui, Zhenyu & Lee, Chihoon & Liu, Yanchu, 2018. "Single-transform formulas for pricing Asian options in a general approximation framework under Markov processes," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1134-1139.
    8. Ning Cai & Yingda Song & Steven Kou, 2015. "A General Framework for Pricing Asian Options Under Markov Processes," Operations Research, INFORMS, vol. 63(3), pages 540-554, June.
    9. Michael B. Giles & Kristian Debrabant & Andreas Ro{ss}ler, 2013. "Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation," Papers 1302.4676, arXiv.org, revised Jun 2019.
    10. Chang-Han Rhee & Peter W. Glynn, 2015. "Unbiased Estimation with Square Root Convergence for SDE Models," Operations Research, INFORMS, vol. 63(5), pages 1026-1043, October.
    11. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2012. "A general control variate method for option pricing under Lévy processes," European Journal of Operational Research, Elsevier, vol. 221(2), pages 368-377.
    12. Vadim Linetsky, 2004. "Spectral Expansions for Asian (Average Price) Options," Operations Research, INFORMS, vol. 52(6), pages 856-867, December.
    13. Mike Giles & Yuan Xia, 2014. "Multilevel Monte Carlo For Exponential L\'{e}vy Models," Papers 1403.5309, arXiv.org, revised May 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    2. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    3. Cui, Zhenyu & Lee, Chihoon & Liu, Yanchu, 2018. "Single-transform formulas for pricing Asian options in a general approximation framework under Markov processes," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1134-1139.
    4. Kailin Ding & Zhenyu Cui & Xiaoguang Yang, 2023. "Pricing arithmetic Asian and Amerasian options: A diffusion operator integral expansion approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(2), pages 217-241, February.
    5. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c & Ger'onimo Uribe Bravo, 2018. "Geometrically Convergent Simulation of the Extrema of L\'{e}vy Processes," Papers 1810.11039, arXiv.org, revised Jun 2021.
    6. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    7. Jorge Gonz'alez C'azares & Aleksandar Mijatovi'c, 2020. "Simulation of the drawdown and its duration in L\'{e}vy models via stick-breaking Gaussian approximation," Papers 2011.06618, arXiv.org, revised Mar 2021.
    8. Michael B. Giles & Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Efficient Risk Estimation for the Credit Valuation Adjustment," Papers 2301.05886, arXiv.org, revised May 2024.
    9. Michael B. Giles & Abdul-Lateef Haji-Ali, 2019. "Sub-sampling and other considerations for efficient risk estimation in large portfolios," Papers 1912.05484, arXiv.org, revised Apr 2022.
    10. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    11. Alaya, Mohamed Ben & Hajji, Kaouther & Kebaier, Ahmed, 2016. "Importance sampling and statistical Romberg method for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 1901-1931.
    12. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.
    13. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "Analytical valuation for geometric Asian options in illiquid markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 175-191.
    14. Zhou, Zhengqing & Wang, Guanyang & Blanchet, Jose H. & Glynn, Peter W., 2023. "Unbiased Optimal Stopping via the MUSE," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    15. Kim, Bara & Kim, Jeongsim & Yoon, Hyungkuk & Lee, Jinyoung, 2024. "Pricing of discretely sampled arithmetic Asian options, under the Hull–White interest rate model," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    16. Jorge González Cázares & Aleksandar Mijatović, 2022. "Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation," Finance and Stochastics, Springer, vol. 26(4), pages 671-732, October.
    17. Zhengqing Zhou & Guanyang Wang & Jose Blanchet & Peter W. Glynn, 2021. "Unbiased Optimal Stopping via the MUSE," Papers 2106.02263, arXiv.org, revised Dec 2022.
    18. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    19. Weinan Zhang & Pingping Zeng, 2023. "A transform-based method for pricing Asian options under general two-dimensional models," Quantitative Finance, Taylor & Francis Journals, vol. 23(11), pages 1677-1697, November.
    20. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Richardson-Romberg and Importance Sampling in Derivative Pricing," Papers 2209.00821, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.09427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.