IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1612.04407.html
   My bibliography  Save this paper

Dynamic Convex Duality in Constrained Utility Maximization

Author

Listed:
  • Yusong Li
  • Harry Zheng

Abstract

In this paper, we study a constrained utility maximization problem following the convex duality approach. After formulating the primal and dual problems, we construct the necessary and sufficient conditions for both the primal and dual problems in terms of FBSDEs plus additional conditions. Such formulation then allows us to explicitly characterize the primal optimal control as a function of the adjoint process coming from the dual FBSDEs in a dynamic fashion and vice versa. Moreover, we also find that the optimal primal wealth process coincides with the adjoint process of the dual problem and vice versa. Finally we solve three constrained utility maximization problems, which contrasts the simplicity of the duality approach we propose and the technical complexity of solving the primal problems directly.

Suggested Citation

  • Yusong Li & Harry Zheng, 2016. "Dynamic Convex Duality in Constrained Utility Maximization," Papers 1612.04407, arXiv.org.
  • Handle: RePEc:arx:papers:1612.04407
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1612.04407
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Hua & Pearson, Neil D., 1991. "Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case," Journal of Economic Theory, Elsevier, vol. 54(2), pages 259-304, August.
    2. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case1," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10, July.
    3. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    4. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.
    5. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    6. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    7. Bian, Baojun & Zheng, Harry, 2015. "Turnpike property and convergence rate for an investment model with general utility functions," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 28-49.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    2. Thijs Kamma & Antoon Pelsser, 2019. "Near-Optimal Dynamic Asset Allocation in Financial Markets with Trading Constraints," Papers 1906.12317, arXiv.org, revised Oct 2019.
    3. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    4. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    5. Wolfgang Putschögl & Jörn Sass, 2008. "Optimal consumption and investment under partial information," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(2), pages 137-170, November.
    6. Chen, An & Vellekoop, Michel, 2017. "Optimal investment and consumption when allowing terminal debt," European Journal of Operational Research, Elsevier, vol. 258(1), pages 385-397.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    9. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    10. Ioannis Karatzas & Gordan Zitkovic, 2007. "Optimal consumption from investment and random endowment in incomplete semimartingale markets," Papers 0706.0051, arXiv.org.
    11. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    12. A. Cadenillas & S. P. Sethi, 1997. "Consumption-Investment Problem with Subsistence Consumption, Bankruptcy, and Random Market Coefficients," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 243-272, May.
    13. Anis Matoussi & Hao Xing, 2016. "Convex duality for stochastic differential utility," Papers 1601.03562, arXiv.org.
    14. Constantinos Kardaras & Gordan Zitkovic, 2007. "Stability of the utility maximization problem with random endowment in incomplete markets," Papers 0706.0482, arXiv.org, revised Mar 2010.
    15. Sanjiv Ranjan Das & Rangarajan K. Sundaram, 2002. "An approximation algorithm for optimal consumption/investment problems," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 11(2), pages 55-69, April.
    16. Li, Minqiang, 2010. "Asset Pricing - A Brief Review," MPRA Paper 22379, University Library of Munich, Germany.
    17. Martin B. Haugh & Leonid Kogan & Jiang Wang, 2006. "Evaluating Portfolio Policies: A Duality Approach," Operations Research, INFORMS, vol. 54(3), pages 405-418, June.
    18. Katia Colaneri & Stefano Herzel & Marco Nicolosi, 2021. "The value of knowing the market price of risk," Annals of Operations Research, Springer, vol. 299(1), pages 101-131, April.
    19. Oleksii Mostovyi, 2015. "Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption," Finance and Stochastics, Springer, vol. 19(1), pages 135-159, January.
    20. Michael J. Brennan & Yihong Xia, 2002. "Dynamic Asset Allocation under Inflation," Journal of Finance, American Finance Association, vol. 57(3), pages 1201-1238, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1612.04407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.