IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1605.04949.html
   My bibliography  Save this paper

How brokers can optimally plot against traders

Author

Listed:
  • Manuel Lafond

Abstract

Traders buy and sell financial instruments in hopes of making profit, and brokers are responsible for the transaction. There are several hypotheses and conspiracy theories arguing that in some situations, brokers want their traders to lose money. For instance, a broker may want to protect the positions of a privileged customer. Another example is that some brokers take positions opposite to their traders', in which case they make money whenever their traders lose money. These are reasons for which brokers might manipulate prices in order to maximize the losses of their traders. In this paper, our goal is to perform this shady task optimally -- or at least to check whether this can actually be done algorithmically. Assuming total control over the price of an asset (ignoring the usual aspects of finance such as market conditions, external influence or stochasticity), we show how in quadratic time, given a set of trades specified by a stop-loss and a take-profit price, a broker can find a maximum loss price movement. We also look at an online trade model where broker and trader exchange turns, each trying to make a profit. We show in which condition either side can make a profit, and that the best option for the trader is to never trade.

Suggested Citation

  • Manuel Lafond, 2016. "How brokers can optimally plot against traders," Papers 1605.04949, arXiv.org, revised Jun 2022.
  • Handle: RePEc:arx:papers:1605.04949
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1605.04949
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    2. Gustavo Silva Araujo & Ricardo Alves Carmo Ribeiro, 2018. "Is Petrobras Options Market Efficient? A Study Using The Delta-Gamma Neutral Strategy," Anais do XLIV Encontro Nacional de Economia [Proceedings of the 44th Brazilian Economics Meeting] 126, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    3. Klaus Schredelseker, 2012. "Finanzkrise — Mitschuld der Theorie?," Schmalenbach Journal of Business Research, Springer, vol. 64(8), pages 833-845, December.
    4. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    5. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    6. Giuseppe Garofalo, 2014. "Irreducible complexities: from Gödel and Turing to the paradigm of Imperfect Knowledge Economics," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3463-3474, November.
    7. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    8. Xuan Vinh Vo & Kevin Daly, 2008. "Volatility amongst firms in the Dow Jones Eurostoxx50 Index," Applied Financial Economics, Taylor & Francis Journals, vol. 18(7), pages 569-582.
    9. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    10. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    11. Ahmet Göncü & Erdinc Akyildirim, 2017. "Statistical Arbitrage In The Multi-Asset Black–Scholes Economy," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-18, March.
    12. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    13. Andrey Kulikov & Naief Alabed Alkader & Galina Panaedova & Aleksandr Ogorodnikov & Evgenii Rebeka, 2023. "Modelling Optimal Capital Structure in Gas and Oil Sector by Applying Simulation Theory and Programming Language of Python (Qatar Gas Transport Company)," Energies, MDPI, vol. 16(10), pages 1-15, May.
    14. Burcu Aydin & Mr. Myeongsuk Kim & Mr. Ho-Seong Moon, 2011. "Financial Linkages Across Korean Banks," IMF Working Papers 2011/201, International Monetary Fund.
    15. Fernando MIERZEJEWSKI & Katholieke Universiteit, 2009. "Towards A General Theory Of Liquidity Preference," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 4(2(8)_ Sum).
    16. Roland Rothenstein, 2018. "Quantification of market efficiency based on informational-entropy," Papers 1812.02371, arXiv.org.
    17. repec:wyi:journl:002108 is not listed on IDEAS
    18. Marielle de Jong & Lauren Stagnol, 2016. "A fundamental bond index including solvency criteria," Journal of Asset Management, Palgrave Macmillan, vol. 17(4), pages 280-294, July.
    19. Morten Balling & Ernest Gnan, 2013. "The development of financial markets and financial theory: 50 years of interaction," SUERF 50th Anniversary Volume Chapters, in: Morten Balling & Ernest Gnan (ed.), 50 Years of Money and Finance: Lessons and Challenges, chapter 5, pages 157-194, SUERF - The European Money and Finance Forum.
    20. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.
    21. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1605.04949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.