IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1412.4045.html
   My bibliography  Save this paper

Variance reduced multilevel path simulation: going beyond the complexity $\varepsilon^{-2}$

Author

Listed:
  • Denis Belomestny
  • Tigran Nagapetyan

Abstract

In this paper a novel modification of the multilevel Monte Carlo approach, allowing for further significant complexity reduction, is proposed. The idea of the modification is to use the method of control variates to reduce variance at level zero. We show that, under a proper choice of control variates, one can reduce the complexity order of the modified MLMC algorithm down to $\varepsilon^{-2+\delta}$ for any $\delta\in [0,1)$ with $\varepsilon$ being the precision to be achieved. These theoretical results are illustrated by several numerical examples.

Suggested Citation

  • Denis Belomestny & Tigran Nagapetyan, 2014. "Variance reduced multilevel path simulation: going beyond the complexity $\varepsilon^{-2}$," Papers 1412.4045, arXiv.org, revised Mar 2017.
  • Handle: RePEc:arx:papers:1412.4045
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1412.4045
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael B. Giles & Lukasz Szpruch, 2012. "Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without L\'{e}vy area simulation," Papers 1202.6283, arXiv.org, revised May 2014.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lay Harold A. & Colgin Zane & Reshniak Viktor & Khaliq Abdul Q. M., 2018. "On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters," Monte Carlo Methods and Applications, De Gruyter, vol. 24(4), pages 309-321, December.
    2. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    3. Al Gerbi Anis & Jourdain Benjamin & Clément Emmanuelle, 2016. "Ninomiya–Victoir scheme: Strong convergence, antithetic version and application to multilevel estimators," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 197-228, September.
    4. Nabil Kahale, 2018. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," Papers 1805.09427, arXiv.org, revised Sep 2018.
    5. Chris J. Oates & Mark Girolami & Nicolas Chopin, 2017. "Control functionals for Monte Carlo integration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 695-718, June.
    6. Chang-Han Rhee & Peter W. Glynn, 2015. "Unbiased Estimation with Square Root Convergence for SDE Models," Operations Research, INFORMS, vol. 63(5), pages 1026-1043, October.
    7. Anis Al Gerbi & Benjamin Jourdain & Emmanuelle Cl'ement, 2015. "Ninomiya-Victoir scheme: strong convergence, antithetic version and application to multilevel estimators," Papers 1508.06492, arXiv.org, revised Oct 2015.
    8. Dirk Becherer & Plamen Turkedjiev, 2014. "Multilevel approximation of backward stochastic differential equations," Papers 1412.3140, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1412.4045. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.