IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1405.4421.html
   My bibliography  Save this paper

Local times for typical price paths and pathwise Tanaka formulas

Author

Listed:
  • Nicolas Perkowski
  • David J. Promel

Abstract

Following a hedging based approach to model free financial mathematics, we prove that it should be possible to make an arbitrarily large profit by investing in those one-dimensional paths which do not possess local times. The local time is constructed from discrete approximations, and it is shown that it is $\alpha$-H\"older continuous for all $\alpha

Suggested Citation

  • Nicolas Perkowski & David J. Promel, 2014. "Local times for typical price paths and pathwise Tanaka formulas," Papers 1405.4421, arXiv.org, revised Apr 2015.
  • Handle: RePEc:arx:papers:1405.4421
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1405.4421
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter P. Carr & Robert A. Jarrow, 2008. "The Stop-Loss Start-Gain Paradox and Option Valuation: A new Decomposition into Intrinsic and Time Value," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 4, pages 61-84, World Scientific Publishing Co. Pte. Ltd..
    2. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    3. Hans Follmer & Alexander Schied, 2013. "Probabilistic aspects of finance," Papers 1309.7759, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łochowski, Rafał M. & Perkowski, Nicolas & Prömel, David J., 2018. "A superhedging approach to stochastic integration," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4078-4103.
    2. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    3. Lesiba Ch. Galane & Rafa{l} M. {L}ochowski & Farai J. Mhlanga, 2018. "On SDEs with Lipschitz coefficients, driven by continuous, model-free martingales," Papers 1807.05692, arXiv.org, revised Feb 2022.
    4. Rafa{l} M. {L}ochowski & Nicolas Perkowski & David J. Promel, 2016. "A superhedging approach to stochastic integration," Papers 1609.02349, arXiv.org, revised Sep 2017.
    5. Ioannis Karatzas & Donghan Kim, 2020. "Trading strategies generated pathwise by functions of market weights," Finance and Stochastics, Springer, vol. 24(2), pages 423-463, April.
    6. Rafa{l} M. {L}ochowski, 2015. "Integration with respect to model-free price paths with jumps," Papers 1511.08194, arXiv.org, revised Sep 2016.
    7. Rafa{l} M. {L}ochowski & Nicolas Perkowski & David J. Promel, 2021. "One-dimensional game-theoretic differential equations," Papers 2101.08041, arXiv.org.
    8. Donghan Kim, 2022. "Local Times for Continuous Paths of Arbitrary Regularity," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2540-2568, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dean Buckner & Kevin Dowd & Hardy Hulley, 2024. "Arbitrage problems with reflected geometric Brownian motion," Finance and Stochastics, Springer, vol. 28(1), pages 1-26, January.
    2. Andrew L. Allan & Chong Liu & David J. Promel, 2021. "A C\`adl\`ag Rough Path Foundation for Robust Finance," Papers 2109.04225, arXiv.org, revised May 2023.
    3. Andrew L. Allan & Chong Liu & David J. Prömel, 2024. "A càdlàg rough path foundation for robust finance," Finance and Stochastics, Springer, vol. 28(1), pages 215-257, January.
    4. Constantinos Kardaras, 2009. "No‐Free‐Lunch Equivalences For Exponential Lévy Models Under Convex Constraints On Investment," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 161-187, April.
    5. Biagini, Francesca & Groll, Andreas & Widenmann, Jan, 2013. "Intensity-based premium evaluation for unemployment insurance products," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 302-316.
    6. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Gu, Lingqi & Lin, Yiqing & Yang, Junjian, 2016. "On the dual problem of utility maximization in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1019-1035.
    9. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    10. Mikhail Zhitlukhin, 2018. "Survival investment strategies in a continuous-time market model with competition," Papers 1811.12491, arXiv.org, revised Sep 2019.
    11. Roland G. Fryer, Jr. & Philipp Harms, 2013. "Two-Armed Restless Bandits with Imperfect Information: Stochastic Control and Indexability," NBER Working Papers 19043, National Bureau of Economic Research, Inc.
    12. repec:hal:wpaper:hal-03284660 is not listed on IDEAS
    13. Mikhail Zhitlukhin, 2022. "A continuous-time asset market game with short-lived assets," Finance and Stochastics, Springer, vol. 26(3), pages 587-630, July.
    14. Claudio Fontana, 2015. "Weak And Strong No-Arbitrage Conditions For Continuous Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-34.
    15. Xiyue Han & Alexander Schied, 2021. "The roughness exponent and its model-free estimation," Papers 2111.10301, arXiv.org, revised Jun 2024.
    16. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    17. Christoph Czichowsky & Walter Schachermayer, 2014. "Duality Theory for Portfolio Optimisation under Transaction Costs," Papers 1408.5989, arXiv.org.
    18. Kardaras, Constantinos, 2013. "On the closure in the Emery topology of semimartingale wealth-process sets," LSE Research Online Documents on Economics 44996, London School of Economics and Political Science, LSE Library.
    19. Michael Monoyios, 2020. "Infinite horizon utility maximisation from inter-temporal wealth," Papers 2009.00972, arXiv.org, revised Oct 2020.
    20. Tahir Choulli & Sina Yansori, 2022. "Log-optimal and numéraire portfolios for market models stopped at a random time," Finance and Stochastics, Springer, vol. 26(3), pages 535-585, July.
    21. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio without NFLVR: existence, complete characterization, and duality," Papers 1807.06449, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1405.4421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.