IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1402.6760.html
   My bibliography  Save this paper

Time-Inconsistent Mean-Utility Portfolio Selection with Moving Target

Author

Listed:
  • Hanqing Jin
  • Yimin Yang

Abstract

In this paper, we solve the time inconsistent portfolio selection problem by using different utility functions with a moving target as our constraint. We solve this problem by finding an equilibrium control under the given definition as our optimal control. We firstly derive a sufficient equilibrium condition for second-order continuously differentiable utility funtions. Then we use power functions of order two, three and four in our problem and find the respective condtions for obtaining an equilibrium for our different problems. In the last part of the paper, we consider using another definition of equilibrium to solve our problem when the utility function that we use in our problem is the negative part of x and also find the condtions for obtaining an equilibrium.

Suggested Citation

  • Hanqing Jin & Yimin Yang, 2014. "Time-Inconsistent Mean-Utility Portfolio Selection with Moving Target," Papers 1402.6760, arXiv.org.
  • Handle: RePEc:arx:papers:1402.6760
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1402.6760
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ainslie, George, 1991. "Derivation of "Rational" Economic Behavior from Hyperbolic Discount Curves," American Economic Review, American Economic Association, vol. 81(2), pages 334-340, May.
    2. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426.
    3. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    4. Marie-Amélie Morlais, 2009. "Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem," Finance and Stochastics, Springer, vol. 13(1), pages 121-150, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1402.6760. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.