IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1312.0557.html
   My bibliography  Save this paper

Asymptotic distribution of the Markowitz portfolio

Author

Listed:
  • Steven E. Pav

Abstract

The asymptotic distribution of the Markowitz portfolio is derived, for the general case (assuming fourth moments of returns exist), and for the case of multivariate normal returns. The derivation allows for inference which is robust to heteroskedasticity and autocorrelation of moments up to order four. As a side effect, one can estimate the proportion of error in the Markowitz portfolio due to mis-estimation of the covariance matrix. A likelihood ratio test is given which generalizes Dempster's Covariance Selection test to allow inference on linear combinations of the precision matrix and the Markowitz portfolio. Extensions of the main method to deal with hedged portfolios, conditional heteroskedasticity, conditional expectation, and constrained estimation are given. It is shown that the Hotelling-Lawley statistic generalizes the (squared) Sharpe ratio under the conditional expectation model. Asymptotic distributions of all four of the common `MGLH' statistics are found, assuming random covariates. Examples are given demonstrating the possible uses of these results.

Suggested Citation

  • Steven E. Pav, 2013. "Asymptotic distribution of the Markowitz portfolio," Papers 1312.0557, arXiv.org, revised Mar 2020.
  • Handle: RePEc:arx:papers:1312.0557
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1312.0557
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    2. Magnus, J.R. & Neudecker, H., 1980. "The elimination matrix : Some lemmas and applications," Other publications TiSEM 0e3315d3-846c-4bc5-928e-f, Tilburg University, School of Economics and Management.
    3. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    4. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    5. Taras Bodnar & Yarema Okhrin, 2011. "On the Product of Inverse Wishart and Normal Distributions with Applications to Discriminant Analysis and Portfolio Theory," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(2), pages 311-331, June.
    6. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    7. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    8. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven E. Pav, 2014. "Bounds on Portfolio Quality," Papers 1409.5936, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    2. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    3. Zhou, Jian & Nicholson, Joseph R., 2015. "Economic value of modeling covariance asymmetry for mixed-asset portfolio diversifications," Economic Modelling, Elsevier, vol. 45(C), pages 14-21.
    4. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    5. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    6. Hongseon Kim & Soonbong Lee & Seung Bum Soh & Seongmoon Kim, 2022. "Improving portfolio investment performance with distance‐based portfolio‐combining algorithms," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(4), pages 941-959, December.
    7. Kazak, Ekaterina & Pohlmeier, Winfried, 2019. "Testing out-of-sample portfolio performance," International Journal of Forecasting, Elsevier, vol. 35(2), pages 540-554.
    8. Bruno Solnik & Thaisiri Watewai, 2016. "International Correlation Asymmetries: Frequent-but-Small and Infrequent-but-Large Equity Returns," PIER Discussion Papers 31., Puey Ungphakorn Institute for Economic Research, revised Jun 2016.
    9. Konstantin Glombek, 2014. "Statistical Inference for High-Dimensional Global Minimum Variance Portfolios," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 845-865, December.
    10. Kircher, Felix & Rösch, Daniel, 2021. "A shrinkage approach for Sharpe ratio optimal portfolios with estimation risks," Journal of Banking & Finance, Elsevier, vol. 133(C).
    11. Bruno Solnik & Thaisiri Watewai, 2016. "International Correlation Asymmetries: Frequent-but-Small and Infrequent-but-Large Equity Returns," PIER Discussion Papers 31, Puey Ungphakorn Institute for Economic Research.
    12. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2021. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 309-352, September.
    13. Frahm, Gabriel & Memmel, Christoph, 2010. "Dominating estimators for minimum-variance portfolios," Journal of Econometrics, Elsevier, vol. 159(2), pages 289-302, December.
    14. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    15. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    16. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    17. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    18. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    19. Francesco Lautizi, 2015. "Large Scale Covariance Estimates for Portfolio Selection," CEIS Research Paper 353, Tor Vergata University, CEIS, revised 07 Aug 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1312.0557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.