IDEAS home Printed from
   My bibliography  Save this paper

Time--consistent investment under model uncertainty: the robust forward criteria


  • Sigrid Kallblad
  • Jan Obloj
  • Thaleia Zariphopoulou


We combine forward investment performance processes and ambiguity averse portfolio selection. We introduce the notion of robust forward criteria which addresses the issues of ambiguity in model specification and in preferences and investment horizon specification. It describes the evolution of time-consistent ambiguity averse preferences. We first focus on establishing dual characterizations of the robust forward criteria. This offers various advantages as the dual problem amounts to a search for an infimum whereas the primal problem features a saddle-point. Our approach is based on ideas developed in Schied (2007) and Zitkovic (2009). We then study in detail non-volatile criteria. In particular, we solve explicitly the example of an investor who starts with a logarithmic utility and applies a quadratic penalty function. The investor builds a dynamical estimate of the market price of risk $\hat \lambda$ and updates her stochastic utility in accordance with the so-perceived elapsed market opportunities. We show that this leads to a time-consistent optimal investment policy given by a fractional Kelly strategy associated with $\hat \lambda$. The leverage is proportional to the investor's confidence in her estimate $\hat \lambda$.

Suggested Citation

  • Sigrid Kallblad & Jan Obloj & Thaleia Zariphopoulou, 2013. "Time--consistent investment under model uncertainty: the robust forward criteria," Papers 1311.3529,, revised Nov 2014.
  • Handle: RePEc:arx:papers:1311.3529

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    2. Tahir Choulli & Christophe Stricker & Jia Li, 2007. "Minimal Hellinger martingale measures of order q," Finance and Stochastics, Springer, vol. 11(3), pages 399-427, July.
    3. Freddy Delbaen & Shige Peng & Emanuela Rosazza Gianin, 2010. "Representation of the penalty term of dynamic concave utilities," Finance and Stochastics, Springer, vol. 14(3), pages 449-472, September.
    4. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    5. M. Musiela & T. Zariphopoulou, 2009. "Portfolio choice under dynamic investment performance criteria," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 161-170.
    6. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    7. Gordan v{Z}itkovi'c, 2008. "A dual characterization of self-generation and exponential forward performances," Papers 0809.0739,, revised Dec 2009.
    8. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    9. Hernández-Hernández Daniel & Schied Alexander, 2006. "Robust utility maximization in a stochastic factor model," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-17, July.
    10. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    11. Föllmer Hans & Penner Irina, 2006. "Convex risk measures and the dynamics of their penalty functions," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-36, July.
    12. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    13. Schied Alexander & Wu Ching-Tang, 2005. "Duality theory for optimal investments under model uncertainty," Statistics & Risk Modeling, De Gruyter, vol. 23(3/2005), pages 199-217, March.
    14. Alexander Schied & Ching-Tang Wu, 2005. "Duality theory for optimal investments under model uncertainty," SFB 649 Discussion Papers SFB649DP2005-025, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany, revised Sep 2005.
    15. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426.
    16. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and Dynamic Convex Risk Measures," SFB 649 Discussion Papers SFB649DP2005-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    17. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    18. Alexander Schied, 2007. "Optimal investments for risk- and ambiguity-averse preferences: a duality approach," Finance and Stochastics, Springer, vol. 11(1), pages 107-129, January.
    19. Henderson, Vicky & Hobson, David, 2007. "Horizon-unbiased utility functions," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1621-1641, November.
    20. Karni, Edi & Schmeidler, David & Vind, Karl, 1983. "On State Dependent Preferences and Subjective Probabilities," Econometrica, Econometric Society, vol. 51(4), pages 1021-1031, July.
    21. He Hua & Huang Chi-fu, 1994. "Consumption-Portfolio Policies: An Inverse Optimal Problem," Journal of Economic Theory, Elsevier, vol. 62(2), pages 257-293, April.
    22. John C. Hershey & Paul J. H. Schoemaker, 1985. "Probability Versus Certainty Equivalence Methods in Utility Measurement: Are they Equivalent?," Management Science, INFORMS, vol. 31(10), pages 1213-1231, October.
    23. Bion-Nadal, Jocelyne, 2009. "Time consistent dynamic risk processes," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 633-654, February.
    24. Hernández-Hernández, Daniel & Schied, Alexander, 2007. "A control approach to robust utility maximization with logarithmic utility and time-consistent penalties," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 980-1000, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1311.3529. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.