IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Time--consistent investment under model uncertainty: the robust forward criteria

  • Sigrid Kallblad
  • Jan Obloj
  • Thaleia Zariphopoulou
Registered author(s):

    We combine forward investment performance processes and ambiguity averse portfolio selection. We introduce the notion of robust forward criteria which addresses the issues of ambiguity in model specification and in preferences and investment horizon specification. It describes the evolution of time-consistent ambiguity averse preferences. We first focus on establishing dual characterizations of the robust forward criteria. This offers various advantages as the dual problem amounts to a search for an infimum whereas the primal problem features a saddle-point. Our approach is based on ideas developed in Schied (2007) and Zitkovic (2009). We then study in detail non-volatile criteria. In particular, we solve explicitly the example of an investor who starts with a logarithmic utility and applies a quadratic penalty function. The investor builds a dynamical estimate of the market price of risk $\hat \lambda$ and updates her stochastic utility in accordance with the so-perceived elapsed market opportunities. We show that this leads to a time-consistent optimal investment policy given by a fractional Kelly strategy associated with $\hat \lambda$. The leverage is proportional to the investor's confidence in her estimate $\hat \lambda$.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1311.3529.

    in new window

    Date of creation: Nov 2013
    Date of revision: Nov 2014
    Handle: RePEc:arx:papers:1311.3529
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-87, May.
    2. Hernández-Hernández, Daniel & Schied, Alexander, 2007. "A control approach to robust utility maximization with logarithmic utility and time-consistent penalties," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 980-1000, August.
    3. Alexander Schied, 2007. "Optimal investments for risk- and ambiguity-averse preferences: a duality approach," Finance and Stochastics, Springer, vol. 11(1), pages 107-129, January.
    4. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-57, August.
    5. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    6. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    7. Alexander Schied & Ching-Tang Wu, 2005. "Duality theory for optimal investments under model uncertainty," SFB 649 Discussion Papers SFB649DP2005-025, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany, revised Sep 2005.
    8. Gordan \v{Z}itkovi\'c, 2008. "A dual characterization of self-generation and exponential forward performances," Papers 0809.0739,, revised Dec 2009.
    9. Föllmer Hans & Penner Irina, 2006. "Convex risk measures and the dynamics of their penalty functions," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 36, July.
    10. Schied Alexander & Wu Ching-Tang, 2005. "Duality theory for optimal investments under model uncertainty," Statistics & Risk Modeling, De Gruyter, vol. 23(3/2005), pages 199-217, March.
    11. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-91, March.
    12. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2004. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Carlo Alberto Notebooks 12, Collegio Carlo Alberto, revised 2006.
    13. Henderson, Vicky & Hobson, David, 2007. "Horizon-unbiased utility functions," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1621-1641, November.
    14. Freddy Delbaen & Shige Peng & Emanuela Rosazza Gianin, 2010. "Representation of the penalty term of dynamic concave utilities," Finance and Stochastics, Springer, vol. 14(3), pages 449-472, September.
    15. Itzhak Gilboa & David Schmeidler, 1989. "Maxmin Expected Utility with Non-Unique Prior," Post-Print hal-00753237, HAL.
    16. Hernández-Hernández Daniel & Schied Alexander, 2006. "Robust utility maximization in a stochastic factor model," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 17, July.
    17. Bion-Nadal, Jocelyne, 2009. "Time consistent dynamic risk processes," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 633-654, February.
    18. Tahir Choulli & Christophe Stricker & Jia Li, 2007. "Minimal Hellinger martingale measures of order q," Finance and Stochastics, Springer, vol. 11(3), pages 399-427, July.
    19. Karni, Edi & Schmeidler, David & Vind, Karl, 1983. "On State Dependent Preferences and Subjective Probabilities," Econometrica, Econometric Society, vol. 51(4), pages 1021-31, July.
    20. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and Dynamic Convex Risk Measures," SFB 649 Discussion Papers SFB649DP2005-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    21. M. Musiela & T. Zariphopoulou, 2009. "Portfolio choice under dynamic investment performance criteria," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 161-170.
    22. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426.
    23. He Hua & Huang Chi-fu, 1994. "Consumption-Portfolio Policies: An Inverse Optimal Problem," Journal of Economic Theory, Elsevier, vol. 62(2), pages 257-293, April.
    24. John C. Hershey & Paul J. H. Schoemaker, 1985. "Probability Versus Certainty Equivalence Methods in Utility Measurement: Are they Equivalent?," Management Science, INFORMS, vol. 31(10), pages 1213-1231, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1311.3529. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.