IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1308.2172.html
   My bibliography  Save this paper

Mean Field Games and Systemic Risk

Author

Listed:
  • Rene Carmona
  • Jean-Pierre Fouque
  • Li-Hsien Sun

Abstract

We propose a simple model of inter-bank borrowing and lending where the evolution of the log-monetary reserves of $N$ banks is described by a system of diffusion processes coupled through their drifts in such a way that stability of the system depends on the rate of inter-bank borrowing and lending. Systemic risk is characterized by a large number of banks reaching a default threshold by a given time horizon. Our model incorporates a game feature where each bank controls its rate of borrowing/lending to a central bank. The optimization reflects the desire of each bank to borrow from the central bank when its monetary reserve falls below a critical level or lend if it rises above this critical level which is chosen here as the average monetary reserve. Borrowing from or lending to the central bank is also subject to a quadratic cost at a rate which can be fixed by the regulator. We solve explicitly for Nash equilibria with finitely many players, and we show that in this model the central bank acts as a clearing house, adding liquidity to the system without affecting its systemic risk. We also study the corresponding Mean Field Game in the limit of large number of banks in the presence of a common noise.

Suggested Citation

  • Rene Carmona & Jean-Pierre Fouque & Li-Hsien Sun, 2013. "Mean Field Games and Systemic Risk," Papers 1308.2172, arXiv.org.
  • Handle: RePEc:arx:papers:1308.2172
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1308.2172
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yichen Feng & Ming Min & Jean-Pierre Fouque, 2022. "Deep Learning for Systemic Risk Measures," Papers 2207.00739, arXiv.org.
    2. Rama Cont & Xin Guo & Renyuan Xu, 2020. "Pareto Optima for a Class of Singular Control Games," Working Papers hal-03049246, HAL.
    3. Zongxia Liang & Keyu Zhang, 2023. "Time-inconsistent mean field and n-agent games under relative performance criteria," Papers 2312.14437, arXiv.org.
    4. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2021. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Dynamic Games and Applications, Springer, vol. 11(3), pages 463-490, September.
    5. Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean-Field Games with Differing Beliefs for Algorithmic Trading," Papers 1810.06101, arXiv.org, revised Dec 2019.
    6. Charlotte Dion & Sarah Lemler, 2020. "Nonparametric drift estimation for diffusions with jumps driven by a Hawkes process," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 489-515, October.
    7. Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean Field Games with Partial Information for Algorithmic Trading," Papers 1803.04094, arXiv.org, revised Mar 2019.
    8. Pierre Cardaliaguet & Charles-Albert Lehalle, 2016. "Mean Field Game of Controls and An Application To Trade Crowding," Papers 1610.09904, arXiv.org, revised Sep 2017.
    9. Eduardo Abi Jaber & Eyal Neuman & Moritz Vo{ss}, 2023. "Equilibrium in Functional Stochastic Games with Mean-Field Interaction," Papers 2306.05433, arXiv.org, revised Feb 2024.
    10. Aditya Maheshwari & Andrey Sarantsev, 2018. "Modeling Financial System with Interbank Flows, Borrowing, and Investing," Risks, MDPI, vol. 6(4), pages 1-26, November.
    11. Ahuja, Saran & Ren, Weiluo & Yang, Tzu-Wei, 2019. "Forward–backward stochastic differential equations with monotone functionals and mean field games with common noise," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3859-3892.
    12. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    13. Mao Fabrice Djete & Gaoyue Guo & Nizar Touzi, 2023. "Mean field game of mutual holding with defaultable agents, and systemic risk," Papers 2303.07996, arXiv.org.
    14. Josselin Garnier & George Papanicolaou & Tzu-Wei Yang, 2015. "A risk analysis for a system stabilized by a central agent," Papers 1507.08333, arXiv.org, revised Aug 2015.
    15. Hanchao Liu & Dena Firoozi & Mich`ele Breton, 2023. "LQG Risk-Sensitive Single-Agent and Major-Minor Mean Field Game Systems: A Variational Framework," Papers 2305.15364, arXiv.org, revised Aug 2023.
    16. Lacker, Daniel, 2015. "Mean field games via controlled martingale problems: Existence of Markovian equilibria," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2856-2894.
    17. Aditya Maheshwari & Andrey Sarantsev, 2017. "Modeling Financial System with Interbank Flows, Borrowing, and Investing," Papers 1707.03542, arXiv.org, revised Oct 2018.
    18. Marcel Nutz, 2016. "A Mean Field Game of Optimal Stopping," Papers 1605.09112, arXiv.org, revised Nov 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1308.2172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.