IDEAS home Printed from
   My bibliography  Save this paper

High-frequency market-making for multi-dimensional Markov processes


  • Pietro Fodra
  • Mauricio Labadie


In this paper we complete and extend our previous work on stochastic control applied to high frequency market-making with inventory constraints and directional bets. Our new model admits several state variables (e.g. market spread, stochastic volatility and intensities of market orders) provided the full system is Markov. The solution of the corresponding HJB equation is exact in the case of zero inventory risk. The inventory risk enters into play in two ways: a path-dependent penalty based on the volatility and a penalty at expiry based on the market spread. We perform perturbation methods on the inventory risk parameter and obtain explicitly the solution and its controls up to first order. We also include transaction costs; we show that the spread of the market-maker is widened to compensate the transaction costs, but the expected gain per traded spread remains constant. We perform several numerical simulations to assess the effect of the parameters on the PNL, showing in particular how the directional bet and the inventory risk change the shape of the PNL density. Finally, we extend our results to the case of multi-aset market-making strategies; we show that the correct notion of inventory risk is the L2-norm of the (multi-dimensional) inventory with respect to the inventory penalties.

Suggested Citation

  • Pietro Fodra & Mauricio Labadie, 2013. "High-frequency market-making for multi-dimensional Markov processes," Papers 1303.7177,, revised Apr 2013.
  • Handle: RePEc:arx:papers:1303.7177

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    2. A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
    3. Eric Gautier & Alexandre Tsybakov, 2011. "High-Dimensional Instrumental Variables Regression and Confidence Sets," Working Papers 2011-13, Center for Research in Economics and Statistics.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marc Hoffmann & Mauricio Labadie & Charles-Albert Lehalle & Gilles Pagès & Huyên Pham & Mathieu Rosenbaum, 2013. "Optimization And Statistical Methods For High Frequency Finance," Post-Print hal-01102785, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1303.7177. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.