IDEAS home Printed from
   My bibliography  Save this paper

On the Preference Relations with Negatively Transitive Asymmetric Part. I


  • Maria Viktorovna Droganova
  • Valentin Vankov Iliev


Given a linearly ordered set I, every surjective map p: A --> I endows the set A with a structure of set of preferences by "replacing" the elements of I with their inverse images via p considered as "balloons" (sets endowed with an equivalence relation), lifting the linear order on A, and "agglutinating" this structure with the balloons. Every ballooning A of a structure of linearly ordered set I is a set of preferences whose preference relation (not necessarily complete) is negatively transitive and every such structure on a given set A can be obtained by ballooning of certain structure of a linearly ordered set I, intrinsically encoded in A. In other words, the difference between linearity and negative transitivity is constituted of balloons. As a consequence of this characterization, under certain natural topological conditions on the set of preferences A furnished with its interval topology, the existence of a continuous generalized utility function on A is proved.

Suggested Citation

  • Maria Viktorovna Droganova & Valentin Vankov Iliev, 2013. "On the Preference Relations with Negatively Transitive Asymmetric Part. I," Papers 1302.7238,, revised Oct 2013.
  • Handle: RePEc:arx:papers:1302.7238

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Ok, Efe A., 2002. "Utility Representation of an Incomplete Preference Relation," Journal of Economic Theory, Elsevier, vol. 104(2), pages 429-449, June.
    2. Rechenauer, Martin, 2008. "On the non-equivalence of weak and strict preference," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 386-388, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1302.7238. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.