IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1204.4877.html
   My bibliography  Save this paper

Optimal simulation schemes for L\'evy driven stochastic differential equations

Author

Listed:
  • Arturo Kohatsu-Higa
  • Salvador Ortiz-Latorre
  • Peter Tankov

Abstract

We consider a general class of high order weak approximation schemes for stochastic differential equations driven by L\'evy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the L\'evy process with a high order scheme for the Brownian driven component, applied between the jump times. The overall approximation is analyzed using a stochastic splitting argument. The resulting error bound involves separate contributions of the compound Poisson approximation and of the discretization scheme for the Brownian part, and allows, on one hand, to balance the two contributions in order to minimize the computational time, and on the other hand, to study the optimal design of the approximating compound Poisson process. For driving processes whose L\'evy measure explodes near zero in a regularly varying way, this procedure allows to construct discretization schemes with arbitrary order of convergence.

Suggested Citation

  • Arturo Kohatsu-Higa & Salvador Ortiz-Latorre & Peter Tankov, 2012. "Optimal simulation schemes for L\'evy driven stochastic differential equations," Papers 1204.4877, arXiv.org.
  • Handle: RePEc:arx:papers:1204.4877
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1204.4877
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jérémy Poirot & Peter Tankov, 2006. "Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 327-344, December.
    2. Kohatsu-Higa, Arturo & Tankov, Peter, 2010. "Jump-adapted discretization schemes for Lévy-driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2258-2285, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1204.4877. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.