IDEAS home Printed from
   My bibliography  Save this paper

Dynamic Markov bridges motivated by models of insider trading


  • Luciano Campi
  • Umut c{C}etin
  • Albina Danilova


Given a Markovian Brownian martingale $Z$, we build a process $X$ which is a martingale in its own filtration and satisfies $X_1 = Z_1$. We call $X$ a dynamic bridge, because its terminal value $Z_1$ is not known in advance. We compute explicitly its semimartingale decomposition under both its own filtration $\cF^X$ and the filtration $\cF^{X,Z}$ jointly generated by $X$ and $Z$. Our construction is heavily based on parabolic PDE's and filtering techniques. As an application, we explicitly solve an equilibrium model with insider trading, that can be viewed as a non-Gaussian generalization of Back and Pedersen's \cite{BP}, where insider's additional information evolves over time.

Suggested Citation

  • Luciano Campi & Umut c{C}etin & Albina Danilova, 2012. "Dynamic Markov bridges motivated by models of insider trading," Papers 1202.2980,
  • Handle: RePEc:arx:papers:1202.2980

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Föllmer, Hans & Wu, Ching-Tang & Yor, Marc, 1999. "Canonical decomposition of linear transformations of two independent Brownian motions motivated by models of insider trading," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 137-164, November.
    2. Back, Kerry & Pedersen, Hal, 1998. "Long-lived information and intraday patterns," Journal of Financial Markets, Elsevier, vol. 1(3-4), pages 385-402, September.
    3. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    4. Back, Kerry, 1992. "Insider Trading in Continuous Time," Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 387-409.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1202.2980. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.