IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1201.6516.html
   My bibliography  Save this paper

Self-dual continuous processes

Author

Listed:
  • Thorsten Rheinlander
  • Michael Schmutz

Abstract

The important application of semi-static hedging in financial markets naturally leads to the notion of quasi self-dual processes which is, for continuous semimartingales, related to symmetry properties of both their ordinary as well as their stochastic logarithms. We provide a structure result for continuous quasi self-dual processes. Moreover, we give a characterisation of continuous Ocone martingales via a strong version of self-duality.

Suggested Citation

  • Thorsten Rheinlander & Michael Schmutz, 2012. "Self-dual continuous processes," Papers 1201.6516, arXiv.org.
  • Handle: RePEc:arx:papers:1201.6516
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1201.6516
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. JosE Fajardo & Ernesto Mordecki, 2006. "Symmetry and duality in Levy markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 219-227.
    2. Ernst Eberlein & Antonis Papapantoleon & Albert Shiryaev, 2008. "On the duality principle in option pricing: semimartingale setting," Finance and Stochastics, Springer, vol. 12(2), pages 265-292, April.
    3. Fajardo, José & Mordecki, Ernesto, 2010. "Market symmetry in time-changed Brownian models," Finance Research Letters, Elsevier, vol. 7(1), pages 53-59, March.
    4. Ernst Eberlein & Antonis Papapantoleon & Albert N. Shiryaev, 2008. "Esscher transform and the duality principle for multidimensional semimartingales," Papers 0809.0301, arXiv.org, revised Nov 2009.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1201.6516. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.