IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Estimating financial risk using piecewise Gaussian processes

  • I. Garcia
  • J. Jimenez
Registered author(s):

    We present a computational method for measuring financial risk by estimating the Value at Risk and Expected Shortfall from financial series. We have made two assumptions: First, that the predictive distributions of the values of an asset are conditioned by information on the way in which the variable evolves from similar conditions, and secondly, that the underlying random processes can be described using piecewise Gaussian processes. The performance of the method was evaluated by using it to estimate VaR and ES for a daily data series taken from the S&P500 index and applying a backtesting procedure recommended by the Basel Committee on Banking Supervision. The results indicated a satisfactory performance.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1112.2889
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1112.2889.

    as
    in new window

    Length:
    Date of creation: Dec 2011
    Date of revision:
    Handle: RePEc:arx:papers:1112.2889
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Kim, Hyoung-Moon & Mallick, Bani K. & Holmes, C.C., 2005. "Analyzing Nonstationary Spatial Data Using Piecewise Gaussian Processes," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 653-668, June.
    2. Brahim-Belhouari, Sofiane & Bermak, Amine, 2004. "Gaussian process for nonstationary time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 705-712, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1112.2889. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.