Gaussian Process regression over discrete probability measures: on the non-stationarity relation between Euclidean and Wasserstein Squared Exponential Kernels
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-025-01463-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kim, Hyoung-Moon & Mallick, Bani K. & Holmes, C.C., 2005. "Analyzing Nonstationary Spatial Data Using Piecewise Gaussian Processes," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 653-668, June.
- Gramacy, Robert B & Lee, Herbert K. H, 2008. "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1119-1130.
- Gramacy, Robert B., 2007. "tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i09).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
- Waley W. J. Liang & Herbert K. H. Lee, 2019. "Bayesian nonstationary Gaussian process models via treed process convolutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 797-818, September.
- Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
- Marco H. Benedetti & Veronica J. Berrocal & Naveen N. Narisetty, 2022. "Identifying regions of inhomogeneities in spatial processes via an M‐RA and mixture priors," Biometrics, The International Biometric Society, vol. 78(2), pages 798-811, June.
- Maria Masotti & Lin Zhang & Ethan Leng & Gregory J. Metzger & Joseph S. Koopmeiners, 2023. "A novel Bayesian functional spatial partitioning method with application to prostate cancer lesion detection using MRI," Biometrics, The International Biometric Society, vol. 79(2), pages 604-615, June.
- Daniel W. Gladish & Daniel E. Pagendam & Luk J. M. Peeters & Petra M. Kuhnert & Jai Vaze, 2018. "Emulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 39-62, March.
- Bolin, David & Wallin, Jonas & Lindgren, Finn, 2019. "Latent Gaussian random field mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 80-93.
- Davis, Casey B. & Hans, Christopher M. & Santner, Thomas J., 2021. "Prediction of non-stationary response functions using a Bayesian composite Gaussian process," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
- Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
- Erickson, Collin B. & Ankenman, Bruce E. & Sanchez, Susan M., 2018. "Comparison of Gaussian process modeling software," European Journal of Operational Research, Elsevier, vol. 266(1), pages 179-192.
- Paul A. Parker & Bruno Sansó, 2025. "Soil Carbon Mapping of the Contiguous US Using VNIR Spectra Within A Heterogeneous Spatial Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(2), pages 517-539, June.
- Horiguchi, Akira & Pratola, Matthew T. & Santner, Thomas J., 2021. "Assessing variable activity for Bayesian regression trees," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
- MacDonald, Blake & Ranjan, Pritam & Chipman, Hugh, 2015. "GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i12).
- Cole, D. Austin & Gramacy, Robert B. & Ludkovski, Mike, 2022. "Large-scale local surrogate modeling of stochastic simulation experiments," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Samuel W. Malone & Robert B. Gramacy & Enrique Ter Horst, 2016. "Timing Foreign Exchange Markets," Econometrics, MDPI, vol. 4(1), pages 1-23, March.
- Marcelo Cunha & Dani Gamerman & Montserrat Fuentes & Marina Paez, 2017. "A non-stationary spatial model for temperature interpolation applied to the state of Rio de Janeiro," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 919-939, November.
- Kelly R. Moran & Matthew W. Wheeler, 2022. "Fast increased fidelity samplers for approximate Bayesian Gaussian process regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1198-1228, September.
- Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
- Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
- Paulo, Rui & García-Donato, Gonzalo & Palomo, Jesús, 2012. "Calibration of computer models with multivariate output," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3959-3974.
More about this item
Keywords
Gaussian Process; Wasserstein; Optimal transport; Kernel; Non-stationarity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:92:y:2025:i:2:d:10.1007_s10898-025-01463-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.