IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Note on the Equivalence between the Normal and the Lognormal Implied Volatility : A Model Free Approach

  • Cyril Grunspan
Registered author(s):

    First, we show that implied normal volatility is intimately linked with the incomplete Gamma function. Then, we deduce an expansion on implied normal volatility in terms of the time-value of a European call option. Then, we formulate an equivalence between the implied normal volatility and the lognormal implied volatility with any strike and any model. This generalizes a known result for the SABR model. Finally, we adress the issue of the "breakeven move" of a delta-hedged portfolio.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1112.1782
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1112.1782.

    as
    in new window

    Length:
    Date of creation: Dec 2011
    Date of revision:
    Handle: RePEc:arx:papers:1112.1782
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    2. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480.
    3. Jaehyuk Choi & Kwangmoon Kim & Minsuk Kwak, 2009. "Numerical Approximation of the Implied Volatility Under Arithmetic Brownian Motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 261-268.
    4. Jörg Kienitz & Manuel Wittke, 2010. "Option Valuation in Multivariate SABR Models," Research Paper Series 272, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Walter Schachermayer & Josef Teichmann, 2008. "How Close Are The Option Pricing Formulas Of Bachelier And Black-Merton-Scholes?," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 155-170.
    6. Cyril Grunspan, 2011. "Asymptotic Expansions of the Lognormal Implied Volatility : A Model Free Approach," Papers 1112.1652, arXiv.org.
    7. S. Benaim & P. Friz, 2009. "Regular Variation And Smile Asymptotics," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 1-12.
    8. Viorel Costeanu & Dan Pirjol, 2011. "Asymptotic Expansion for the Normal Implied Volatility in Local Volatility Models," Papers 1105.3359, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1112.1782. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.