IDEAS home Printed from
   My bibliography  Save this paper

Optimal investment with intermediate consumption and random endowment


  • Oleksii Mostovyi


We consider a problem of optimal investment with intermediate consumption and random endowment in an incomplete semimartingale model of a financial market. We establish the key assertions of the utility maximization theory assuming that both primal and dual value functions are finite in the interiors of their domains as well as that random endowment at maturity can be dominated by the terminal value of a self-financing wealth process. In order to facilitate verification of these conditions, we present alternative, but equivalent conditions, under which the conclusions of the theory hold.

Suggested Citation

  • Oleksii Mostovyi, 2011. "Optimal investment with intermediate consumption and random endowment," Papers 1110.2573,, revised Oct 2012.
  • Handle: RePEc:arx:papers:1110.2573

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Julien Hugonnier & Dmitry Kramkov, 2004. "Optimal investment with random endowments in incomplete markets," Papers math/0405293,
    2. Gordan Zitkovic, 2005. "Utility Maximization with a Stochastic Clock and an Unbounded Random Endowment," Papers math/0503516,
    3. Cuoco, Domenico, 1997. "Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income," Journal of Economic Theory, Elsevier, vol. 72(1), pages 33-73, January.
    4. (**), Hui Wang & Jaksa Cvitanic & (*), Walter Schachermayer, 2001. "Utility maximization in incomplete markets with random endowment," Finance and Stochastics, Springer, vol. 5(2), pages 259-272.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1110.2573. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.