IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1109.3893.html
   My bibliography  Save this paper

Concave Generalized Flows with Applications to Market Equilibria

Author

Listed:
  • Laszlo A. Vegh

Abstract

We consider a nonlinear extension of the generalized network flow model, with the flow leaving an arc being an increasing concave function of the flow entering it, as proposed by Truemper and Shigeno. We give a polynomial time combinatorial algorithm for solving corresponding flow maximization problems, finding an epsilon-approximate solution in O(m(m+log n)log(MUm/epsilon)) arithmetic operations and value oracle queries, where M and U are upper bounds on simple parameters. This also gives a new algorithm for linear generalized flows, an efficient, purely scaling variant of the Fat-Path algorithm by Goldberg, Plotkin and Tardos, not using any cycle cancellations. We show that this general convex programming model serves as a common framework for several market equilibrium problems, including the linear Fisher market model and its various extensions. Our result immediately extends these market models to more general settings. We also obtain a combinatorial algorithm for nonsymmetric Arrow-Debreu Nash bargaining, settling an open question by Vazirani.

Suggested Citation

  • Laszlo A. Vegh, 2011. "Concave Generalized Flows with Applications to Market Equilibria," Papers 1109.3893, arXiv.org, revised Apr 2012.
  • Handle: RePEc:arx:papers:1109.3893
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1109.3893
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jain, Kamal & Vazirani, Vijay V., 2010. "Eisenberg-Gale markets: Algorithms and game-theoretic properties," Games and Economic Behavior, Elsevier, vol. 70(1), pages 84-106, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1109.3893. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.