IDEAS home Printed from
   My bibliography  Save this paper

Adapted Downhill Simplex Method for Pricing Convertible Bonds


  • Kateryna Mishchenko
  • Volodymyr Mishchenko
  • Anatoliy Malyarenko


The paper is devoted to modeling optimal exercise strategies of the behavior of investors and issuers working with convertible bonds. This implies solution of the problems of stock price modeling, payoff computation and min-max optimization. Stock prices (underlying asset) were modeled under the assumption of the geometric Brownian motion of their values. The Monte Carlo method was used for calculating the real payoff which is the objective function. The min-max optimization problem was solved using the derivative-free Downhill Simplex method. The performed numerical experiments allowed to formulate recommendations for the choice of appropriate size of the initial simplex in the Downhill Simplex Method, the number of generated trajectories of underlying asset, the size of the problem and initial trajectories of the behavior of investors and issuers.

Suggested Citation

  • Kateryna Mishchenko & Volodymyr Mishchenko & Anatoliy Malyarenko, 2007. "Adapted Downhill Simplex Method for Pricing Convertible Bonds," Papers 0710.0241,
  • Handle: RePEc:arx:papers:0710.0241

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    2. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0710.0241. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.