IDEAS home Printed from
   My bibliography  Save this paper

Design and Evaluation of Empirical Models for Stock Price Prediction


  • DE SMEDT, Tom
  • MARTENS, David
  • DAELEMANS, Walter


The efficient market hypothesis and related theories claim that it is impossible to predict future stock prices. Even so, empirical research has countered this claim by achieving better than random prediction performance. Using a model built from a combination of text mining and time series prediction, we provide further evidence to counter the efficient market hypothesis. We discuss the difficulties in evaluating such models by investigating the drawbacks of the common choices of evaluation metrics used in these empirical studies. We continue by suggesting alternative techniques to validate stock prediction models, circumventing these shortcomings. Finally, a trading system is built for the Euronext Brussels stock exchange market. In our framework, we applied a novel sentiment mining technique in the design of the model and show the usefulness of state-of-the-art explanation-based techniques to validate the resulting models.

Suggested Citation

  • JUNQUÉ DE FORTUNY, Enric & DE SMEDT, Tom & MARTENS, David & DAELEMANS, Walter, 2012. "Design and Evaluation of Empirical Models for Stock Price Prediction," Working Papers 2012017, University of Antwerp, Faculty of Applied Economics.
  • Handle: RePEc:ant:wpaper:2012017

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Burton G. Malkiel, 2005. "Reflections on the Efficient Market Hypothesis: 30 Years Later," The Financial Review, Eastern Finance Association, vol. 40(1), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Stock prediction; Support Vector Machine; Text mining; Opinion mining;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2012017. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joeri Nys). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.