IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2020002.html

Improving Finite Sample Approximation by Central Limit Theorems for DEA and FDH efficiency scores

Author

Listed:
  • Simar, Leopold
  • Zelenyuk, Valentin

Abstract

We propose an improvement of the finite sample approximation of the central limit theorems (CLTs) that were recently derived for statistics involving production efficiency scores estimated via Data Envelopment Analysis (DEA) or Free Disposal Hull (FDH) approaches. The improvement is very easy to implement since it involves a simple correction of the already employed statistics without any additional computational burden and preserves the original asymptotic results such as consistency and asymptotic normality. The proposed approach persistently showed improvement in all the scenarios that we tried in various Monte-Carlo experiments, especially for relatively small samples or relatively large dimensions (measured by total number of inputs and outputs) of the underlying production model. This approach therefore is expected to be valuable (and at almost no additional computational costs) for practitioners wishing to perform statistical inference about production efficiency using DEA or FDH approaches.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Simar, Leopold & Zelenyuk, Valentin, 2020. "Improving Finite Sample Approximation by Central Limit Theorems for DEA and FDH efficiency scores," LIDAM Reprints ISBA 2020002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2020002
    Note: In : European Journal of Operational Research, https://doi.org/10.1016/j.ejor.2020.01.036
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manh Pham & Léopold Simar & Valentin Zelenyuk, 2024. "Statistical Inference for Aggregation of Malmquist Productivity Indices," Operations Research, INFORMS, vol. 72(4), pages 1615-1629, July.
    2. Léopold Simar & Valentin Zelenyuk & Shirong Zhao, 2023. "Further improvements of finite sample approximation of central limit theorems for envelopment estimators," Journal of Productivity Analysis, Springer, vol. 59(2), pages 189-194, April.
    3. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    4. Juan F. Monge & José L. Ruiz, 2025. "Measuring Efficiency in Data Envelopment Analysis Under Conditional Convexity," Journal of Optimization Theory and Applications, Springer, vol. 205(3), pages 1-21, June.
    5. Bao Hoang Nguyen & Valentin Zelenyuk, 2020. "Aggregate Efficiency of Industry and its Groups: The case of Queensland Public Hospitals," CEPA Working Papers Series WP062020, School of Economics, University of Queensland, Australia.
    6. Bao Hoang Nguyen & Valentin Zelenyuk, 2021. "Aggregation of Outputs and Inputs for DEA Analysis of Hospital Efficiency: Economics, Operations Research and Data Science Perspectives," International Series in Operations Research & Management Science, in: Joe Zhu & Vincent Charles (ed.), Data-Enabled Analytics, pages 123-158, Springer.
    7. Valentin Zelenyuk, 2021. "Performance Analysis: Economic Foundations and Trends," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(3), pages 153-229, September.
    8. Du, Kai & Zelenyuk, Valentin, 2025. "Likelihood-ratio test for technological differences in two-stage data envelopment analysis for panel data," European Journal of Operational Research, Elsevier, vol. 321(2), pages 644-663.
    9. Simar, Léopold & Zelenyuk, Valentin & Zhao, Shirong, 2024. "Inference for aggregate efficiency: Theory and guidelines for practitioners," European Journal of Operational Research, Elsevier, vol. 316(1), pages 240-254.
    10. Nguyen, Bao Hoang & Simar, Léopold & Zelenyuk, Valentin, 2022. "Data sharpening for improving central limit theorem approximations for data envelopment analysis–type efficiency estimators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1469-1480.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2020002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.