IDEAS home Printed from https://ideas.repec.org/p/ags/quedwp/273465.html

Simulation-based Tests that can Use Any Number of Simulations

Author

Listed:
  • Racine, Jeff
  • MacKinnon, James

Abstract

Conventional procedures for Monte Carlo and bootstrap tests require that B, the number of simulations, satisfy a specific relationship with the level of the test. Otherwise, a test that would instead be exact will either overreject or underreject for finite B. We present expressions for the rejection frequencies associated with existing procedures and propose a new procedure that yields exact Monte Carlo tests for any positive value of B. This procedure, which can also be used for bootstrap tests, is likely to be most useful when simulation is expensive.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Racine, Jeff & MacKinnon, James, 2004. "Simulation-based Tests that can Use Any Number of Simulations," Queen's Economics Department Working Papers 273465, Queen's University - Department of Economics.
  • Handle: RePEc:ags:quedwp:273465
    DOI: 10.22004/ag.econ.273465
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/273465/files/qed_wp_1027.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.273465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rand R. Wilcox, 2018. "Robust regression: an inferential method for determining which independent variables are most important," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 100-111, January.
    2. Rand Wilcox & Florence Clark, 2014. "Comparing robust regression lines associated with two dependent groups when there is heteroscedasticity," Computational Statistics, Springer, vol. 29(5), pages 1175-1186, October.
    3. MacKinnon, James, 2007. "Bootstrap Hypothesis Testing," Queen's Economics Department Working Papers 273603, Queen's University - Department of Economics.
    4. Racine, Jeffrey S. & MacKinnon, James G., 2007. "Inference via kernel smoothing of bootstrap P values," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5949-5957, August.
    5. JAMES G. MacKINNON, 2006. "Bootstrap Methods in Econometrics," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 2-18, September.
    6. MacKinnon, James G., 2011. "Thirty Years of Heteroskedasticity-Robust Inference," Queen's Economics Department Working Papers 273816, Queen's University - Department of Economics.
    7. Francisco J. Ruge-Murcia, 2013. "Generalized Method of Moments estimation of DSGE models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 20, pages 464-485, Edward Elgar Publishing.

    More about this item

    Keywords

    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:quedwp:273465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.