IDEAS home Printed from https://ideas.repec.org/p/ags/feemcl/158751.html
   My bibliography  Save this paper

The Optimal Energy Mix in Power Generation and the Contribution from Natural Gas in Reducing Carbon Emissions to 2030 and Beyond

Author

Listed:
  • Carraro, Carlo
  • Tavoni, Massimo
  • Longden, Thomas
  • Marangoni, Giacomo

Abstract

This paper analyses a set of new scenarios for energy markets in Europe to evaluate the consistency of economic incentives and climate objectives. It focuses in particular on the role of natural gas across a range of climate policy scenarios (including the Copenhagen Pledges and the EU Roadmap) to identify whether current trends and policies are leading to an economically efficient and, at the same time, climate friendly, energy mix. Economic costs and environmental objectives are balanced to identify the welfare-maximising development path, the related investment strategies in the energy sector, and the resulting optimal energy mix. Policy measures to support this balanced economic development are identified. A specific sensitivity analysis upon the role of the 2020 renewable targets and increased energy efficiency improvements is also carried out. We conclude that a suitable and sustained carbon price needs to be implemented to move energy markets in Europe closer to the optimal energy mix. We also highlight that an appropriate carbon pricing is sufficient to achieve both the emission target and the renewable target, without incurring in high economic costs if climate policy is not too ambitious and/or it is internationally coordinated. Finally, our results show that natural gas is the key transitional fuel within the cost-effective achievement of a range of climate policy targets.

Suggested Citation

  • Carraro, Carlo & Tavoni, Massimo & Longden, Thomas & Marangoni, Giacomo, 2013. "The Optimal Energy Mix in Power Generation and the Contribution from Natural Gas in Reducing Carbon Emissions to 2030 and Beyond," Climate Change and Sustainable Development 158751, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemcl:158751
    DOI: 10.22004/ag.econ.158751
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/158751/files/NDL2013-086.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.158751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    2. Francesco Bosello & Lorenza Campagnolo & Carlo Carraro & Fabio Eboli & Ramiro Parrado & Elisa Portale, 2013. "Macroeconomic Impacts of the EU 30% GHG Mitigation Target," Working Papers 2013.28, Fondazione Eni Enrico Mattei.
    3. Brigitte Knopf & Yen-Heng Henry Chen & Enrica De Cian & Hannah Förster & Amit Kanudia & Ioanna Karkatsouli & Ilkka Keppo & Tiina Koljonen & Katja Schumacher & Detlef P. Van Vuuren, 2013. "Beyond 2020 — Strategies And Costs For Transforming The European Energy System," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-38.
    4. Böhringer, Christoph & Rutherford, Thomas F. & Tol, Richard S. J., 2009. "The EU 20/20/2020 Targets: An Overview of the EMF22 Assessment," Papers WP325, Economic and Social Research Institute (ESRI).
    5. Hoogwijk, Monique & van Vuuren, Detlef & de Vries, Bert & Turkenburg, Wim, 2007. "Exploring the impact on cost and electricity production of high penetration levels of intermittent electricity in OECD Europe and the USA, results for wind energy," Energy, Elsevier, vol. 32(8), pages 1381-1402.
    6. Valentina Bosetti & Emanuele Massetti & Massimo Tavoni, 2007. "The WITCH Model. Structure, Baseline, Solutions," Working Papers 2007.10, Fondazione Eni Enrico Mattei.
    7. Blesl, Markus & Kober, Tom & Bruchof, David & Kuder, Ralf, 2010. "Effects of climate and energy policy related measures and targets on the future structure of the European energy system in 2020 and beyond," Energy Policy, Elsevier, vol. 38(10), pages 6278-6292, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    2. Kim, Dowon & Ryu, Heelang & Lee, Jiwoong & Kim, Kyoung-Kuk, 2022. "Balancing risk: Generation expansion planning under climate mitigation scenarios," European Journal of Operational Research, Elsevier, vol. 297(2), pages 665-679.
    3. Gaspari, Michele & Lorenzoni, Arturo, 2018. "The governance for distributed energy resources in the Italian electricity market: A driver for innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3623-3632.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carrara, Samuel & Marangoni, Giacomo, 2017. "Including system integration of variable renewable energies in a constant elasticity of substitution framework: The case of the WITCH model," Energy Economics, Elsevier, vol. 64(C), pages 612-626.
    2. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    3. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    4. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    5. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    6. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    7. Enrica De Cian & Ilkka Keppo & Johannes Bollen & Samuel Carrara & Hannah Förster & Michael Hübler & Amit Kanudia & Sergey Paltsev & Ronald D. Sands & Katja Schumacher, 2013. "European-Led Climate Policy Versus Global Mitigation Action: Implications On Trade, Technology, And Energy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-28.
    8. Bosello, Francesco & Carraro, Carlo & De Cian, Enrica, 2013. "Adaptation can help mitigation: an integrated approach to post-2012 climate policy," Environment and Development Economics, Cambridge University Press, vol. 18(3), pages 270-290, June.
    9. Bosetti, Valentina & Carraro, Carlo & De Cian, Enrica & Massetti, Emanuele & Tavoni, Massimo, 2013. "Incentives and stability of international climate coalitions: An integrated assessment," Energy Policy, Elsevier, vol. 55(C), pages 44-56.
    10. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    11. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    12. Shardul Agrawala & Francesco Bosello & Carlo Carraro & Kelly De Bruin & Enrica De Cian & Rob Dellink & Elisa Lanzi, 2011. "Plan Or React? Analysis Of Adaptation Costs And Benefits Using Integrated Assessment Models," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 175-208.
    13. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele, 2009. "Banking permits: Economic efficiency and distributional effects," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 382-403, May.
    14. Carraro, Carlo & Favero, Alice & Massetti, Emanuele, 2012. "“Investments and public finance in a green, low carbon, economy”," Energy Economics, Elsevier, vol. 34(S1), pages 15-28.
    15. Bastianin, Andrea & Favero, Alice & Massetti, Emanuele, 2010. "Investments and Financial Flows Induced by Climate Mitigation Policies," Sustainable Development Papers 59418, Fondazione Eni Enrico Mattei (FEEM).
    16. Carraro, Carlo & Bosetti, Valentina & Massetti, Emanuele & Tavoni, Massimo, 2007. "Optimal Energy Investment and R&D Strategies to Stabilise Greenhouse Gas Atmospheric Concentrations," CEPR Discussion Papers 6549, C.E.P.R. Discussion Papers.
    17. Hannah Förster & Katja Schumacher & Enrica De Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European Energy Efficiency And Decarbonization Strategies Beyond 2030 — A Sectoral Multi-Model Decomposition," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-29.
    18. Carlo Carraro & Enrica De Cian & Lea Nicita, 2009. "Modeling Biased Technical Change. Implications For Climate Policy," Working Papers 2009_27, Department of Economics, University of Venice "Ca' Foscari".
    19. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    20. Enrica Cian & Samuel Carrara & Massimo Tavoni, 2014. "Innovation benefits from nuclear phase-out: can they compensate the costs?," Climatic Change, Springer, vol. 123(3), pages 637-650, April.

    More about this item

    Keywords

    Environmental Economics and Policy;

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemcl:158751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.