IDEAS home Printed from https://ideas.repec.org/p/ags/aaea12/124367.html
   My bibliography  Save this paper

Ignoring the Multi-species Aspect of Labor Supply Decisions in Spatially Explicit Bio-economic Fishery Models

Author

Listed:
  • Stafford, Tess

Abstract

This paper analyzes the bias associated with ignoring the multi-species aspect of labor supply decisions in spatially explicit bioeconomic fishery models. Recent advancements have been made to simultaneously model the biology of a marine species and the strategic behavior of harvesters over both time and space in order to more accurately predict the effect of regulatory policies on harvester effort and resource population. These models assume a nested choice structure in which the harvester first faces a dichotomous decision between fishing for the target species or not on a given day and then chooses a location to fish conditional on participation. This structure implicitly groups all non-target species options together in the first nest forcing participation-specific coefficients to be the same for all outside options, including fishing for an alternative species and staying home, two very different choices. Using a complete 15-year panel of all fishing trips made by fishermen possessing a Florida spiny lobster license, including non-lobster trips, I show that the simplifying assumption of a dichotomous choice structure in the first nest is not innocuous and that the participation probabilities can change substantially with the addition of another species as an outside alternative.

Suggested Citation

  • Stafford, Tess, 2012. "Ignoring the Multi-species Aspect of Labor Supply Decisions in Spatially Explicit Bio-economic Fishery Models," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124367, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea12:124367
    DOI: 10.22004/ag.econ.124367
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/124367/files/Stafford%20-%20MS.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Smith, Martin D., 2005. "State dependence and heterogeneity in fishing location choice," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 319-340, September.
    2. Smith, Martin D. & Zhang, Junjie & Coleman, Felicia C., 2008. "Econometric modeling of fisheries with complex life histories: Avoiding biological management failures," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 265-280, May.
    3. Robert L. Hicks & Kurt E. Schnier, 2006. "Dynamic Random Utility Modeling: A Monte Carlo Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(4), pages 816-835.
    4. Sanchirico, James N. & Wilen, James E., 2001. "A Bioeconomic Model of Marine Reserve Creation," Journal of Environmental Economics and Management, Elsevier, vol. 42(3), pages 257-276, November.
    5. Sanchirico, James N. & Wilen, James E., 2005. "Optimal spatial management of renewable resources: matching policy scope to ecosystem scale," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 23-46, July.
    6. Smith, Martin D. & Wilen, James E., 2003. "Economic impacts of marine reserves: the importance of spatial behavior," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 183-206, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Haynie, Alan & F. Layton, David, 2010. "An expected profit model for monetizing fishing location choices," Journal of Environmental Economics and Management, Elsevier, vol. 59(2), pages 165-176, March.
    2. Stafford, Tess M., 2018. "Accounting for outside options in discrete choice models: An application to commercial fishing effort," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 159-179.
    3. Junjie Zhang & Martin Smith, 2011. "Heterogeneous Response to Marine Reserve Formation: A Sorting Model approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(3), pages 311-325, July.
    4. Asche, Frank & Smith, Martin D., 2010. "Trade and fisheries: Key issues for the World Trade Organization," WTO Staff Working Papers ERSD-2010-03, World Trade Organization (WTO), Economic Research and Statistics Division.
    5. Brock, William & Xepapadeas, Anastasios, 2010. "Pattern formation, spatial externalities and regulation in coupled economic-ecological systems," Journal of Environmental Economics and Management, Elsevier, vol. 59(2), pages 149-164, March.
    6. Smith, Martin D. & Sanchirico, James N. & Wilen, James E., 2009. "The economics of spatial-dynamic processes: Applications to renewable resources," Journal of Environmental Economics and Management, Elsevier, vol. 57(1), pages 104-121, January.
    7. W. A. Brock & A. Xepapadeas, 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," Working Papers 2015.66, Fondazione Eni Enrico Mattei.
    8. William C. Horrace & Kurt E. Schnier, 2010. "Fixed-Effect Estimation of Highly Mobile Production Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(5), pages 1432-1445.
    9. Costello, Christopher & Polasky, Stephen, 2008. "Optimal harvesting of stochastic spatial resources," Journal of Environmental Economics and Management, Elsevier, vol. 56(1), pages 1-18, July.
    10. Anastasios Xepapadeas, "undated". "Diffusion and Spatial Aspects," DEOS Working Papers 1232, Athens University of Economics and Business.
    11. Hicks, Robert L. & Schnier, Kurt E., 2008. "Eco-labeling and dolphin avoidance: A dynamic model of tuna fishing in the Eastern Tropical Pacific," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 103-116, September.
    12. Hicks, Robert L. & Schnier, Kurt E., 2006. "A Spatial Model of Dolphin Avoidance in the Eastern Tropical Pacific Ocean," 2006 Annual meeting, July 23-26, Long Beach, CA 21290, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Abbott, Joshua K. & Wilen, James E., 2011. "Dissecting the tragedy: A spatial model of behavior in the commons," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 386-401.
    14. Holland, Daniel S. & Herrera, Guillermo E., 2012. "The impact of age structure, uncertainty, and asymmetric spatial dynamics on regulatory performance in a fishery metapopulation," Ecological Economics, Elsevier, vol. 77(C), pages 207-218.
    15. Sterner, Thomas, 2007. "Unobserved diversity, depletion and irreversibility The importance of subpopulations for management of cod stocks," Ecological Economics, Elsevier, vol. 61(2-3), pages 566-574, March.
    16. Christopher Costello & Daniel T. Kaffine, 2010. "Marine protected areas in spatial property-rights fisheries ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(3), pages 321-341, July.
    17. Haynie, Alan C. & Hicks, Robert L. & Schnier, Kurt E., 2009. "Common property, information, and cooperation: Commercial fishing in the Bering Sea," Ecological Economics, Elsevier, vol. 69(2), pages 406-413, December.
    18. R. Quentin Grafton & Tom Kompas & Pham Van Ha, 2009. "Cod Today and None Tomorrow: The Economic Value of a Marine Reserve," Land Economics, University of Wisconsin Press, vol. 85(3), pages 454-469.
    19. Catherine J. Morrison Paul & Ronald G. Felthoven & Marcelo de O. Torres, 2010. "Productive performance in fisheries: modeling, measurement, and management," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(3), pages 343-360, July.
    20. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.

    More about this item

    Keywords

    Environmental Economics and Policy; Resource /Energy Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea12:124367. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/aaeaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.