IDEAS home Printed from https://ideas.repec.org/h/spr/circec/v2y2022i3d10.1007_s43615-022-00157-x.html
   My bibliography  Save this book chapter

Assessment of Critical Resource Use in Aircraft Manufacturing

Author

Listed:
  • Iulia Dolganova

    (Technische Universität Berlin)

  • Vanessa Bach

    (Technische Universität Berlin)

  • Anne Rödl

    (Technische Universität Hamburg)

  • Martin Kaltschmitt

    (Technische Universität Hamburg)

  • Matthias Finkbeiner

    (Technische Universität Berlin)

Abstract

The global aircraft fleet has been expanding worldwide, leading to a high demand for primary resources. Simultaneously, recycling initiatives for decommissioned aircraft are still incipient. Following circular economy principles, the aims of this paper are to identify potentially critical resources used and related environmental impacts, to derive recommendations regarding recycling, and to analyze the influence of increasing utilization of lightweight composite materials in aircraft manufacturing. It was identified that the engine is the structure containing resources with the highest scarcity, with tantalum dominating seven of the eleven analyzed impact categories. Aluminum, titanium, and nickel were shown to lead to the highest environmental impacts. Hotspots in the criticality and environmental assessment often occur due to alloying resources with a low mass share. It was shown that aluminum and steel alloy recycling should be prioritized. A higher lightweight composite material share in the aircraft increases impacts in the categories climate change and fossil resource depletion by 12% and 20%, respectively, whereas the impact of the category acidification, political stability, and demand growth decreases by 16%, 35%, and 60%, respectively.

Suggested Citation

  • Iulia Dolganova & Vanessa Bach & Anne Rödl & Martin Kaltschmitt & Matthias Finkbeiner, 2022. "Assessment of Critical Resource Use in Aircraft Manufacturing," Circular Economy and Sustainability,, Springer.
  • Handle: RePEc:spr:circec:v:2:y:2022:i:3:d:10.1007_s43615-022-00157-x
    DOI: 10.1007/s43615-022-00157-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-022-00157-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-022-00157-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iulia Dolganova & Anne Rödl & Vanessa Bach & Martin Kaltschmitt & Matthias Finkbeiner, 2020. "A Review of Life Cycle Assessment Studies of Electric Vehicles with a Focus on Resource Use," Resources, MDPI, vol. 9(3), pages 1-20, March.
    2. T. E. Graedel & Barbara K. Reck, 2016. "Six Years of Criticality Assessments: What Have We Learned So Far?," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 692-699, August.
    3. Kim Maya Yavor & Vanessa Bach & Matthias Finkbeiner, 2021. "Resource Assessment of Renewable Energy Systems—A Review," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    4. Mancheri, Nabeel A., 2015. "World trade in rare earths, Chinese export restrictions, and implications," Resources Policy, Elsevier, vol. 46(P2), pages 262-271.
    5. Seung-Jin Lee & Troy R. Hawkins & Wesley W. Ingwersen & Douglas M. Young, 2015. "Exploring the Use of Ecological Footprint in Life Cycle Impact Assessment," Journal of Industrial Ecology, Yale University, vol. 19(3), pages 416-426, June.
    6. Peter Greim & A. A. Solomon & Christian Breyer, 2020. "Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Maximilian Ueberschaar & Daniel Dariusch Jalalpoor & Nathalie Korf & Vera Susanne Rotter, 2017. "Potentials and Barriers for Tantalum Recovery from Waste Electric and Electronic Equipment," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 700-714, June.
    8. Vanessa Bach & Markus Berger & Natalia Finogenova & Matthias Finkbeiner, 2019. "Analyzing Changes in Supply Risks for Abiotic Resources over Time with the ESSENZ Method—A Data Update and Critical Reflection," Resources, MDPI, vol. 8(2), pages 1-16, April.
    9. Alexander Cimprich & Vanessa Bach & Christoph Helbig & Andrea Thorenz & Dieuwertje Schrijvers & Guido Sonnemann & Steven B. Young & Thomas Sonderegger & Markus Berger, 2019. "Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product‐level supply risk assessment," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1226-1236, October.
    10. Henckens, M.L.C.M. & van Ierland, E.C. & Driessen, P.P.J. & Worrell, E., 2016. "Mineral resources: Geological scarcity, market price trends, and future generations," Resources Policy, Elsevier, vol. 49(C), pages 102-111.
    11. Arendt, Rosalie & Muhl, Marco & Bach, Vanessa & Finkbeiner, Matthias, 2020. "Criticality assessment of abiotic resource use for Europe– application of the SCARCE method," Resources Policy, Elsevier, vol. 67(C).
    12. Xin Sun & Vanessa Bach & Matthias Finkbeiner & Jianxin Yang, 2021. "Criticality Assessment of the Life Cycle of Passenger Vehicles Produced in China," Circular Economy and Sustainability,, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanessa Bach & Markus Berger & Natalia Finogenova & Matthias Finkbeiner, 2019. "Analyzing Changes in Supply Risks for Abiotic Resources over Time with the ESSENZ Method—A Data Update and Critical Reflection," Resources, MDPI, vol. 8(2), pages 1-16, April.
    2. Julia Pelzeter & Vanessa Bach & Martin Henßler & Klaus Ruhland & Matthias Finkbeiner, 2022. "Enhancement of the ESSENZ Method and Application in a Case Study on Batteries," Resources, MDPI, vol. 11(6), pages 1-25, May.
    3. Xin Sun & Vanessa Bach & Matthias Finkbeiner & Jianxin Yang, 2021. "Criticality Assessment of the Life Cycle of Passenger Vehicles Produced in China," Circular Economy and Sustainability,, Springer.
    4. Hayes, Sarah M. & McCullough, Erin A., 2018. "Critical minerals: A review of elemental trends in comprehensive criticality studies," Resources Policy, Elsevier, vol. 59(C), pages 192-199.
    5. Behnaz Minooei Fard & Willi Semmler & Giovanni Di Bartolomeo, 2023. "Rare Earth Elements: A game between China and the rest of the world," Working Papers in Public Economics 235, University of Rome La Sapienza, Department of Economics and Law.
    6. Schmid Marc, 2019. "Kritische Rohstoffe – Die Achillesverse der USA im Wettstreit mit China," Zeitschrift für Wirtschaftspolitik, De Gruyter, vol. 68(3), pages 309-330, December.
    7. Schmid, Marc, 2019. "Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    8. Yi, Jiahui & Dai, Sheng & Cheng, Jinhua & Wu, Qiaosheng & Liu, Kailei, 2021. "Production quota policy in China: Implications for sustainable supply capacity of critical minerals," Resources Policy, Elsevier, vol. 72(C).
    9. Jair Santillán‐Saldivar & Tobias Gaugler & Christoph Helbig & Andreas Rathgeber & Guido Sonnemann & Andrea Thorenz & Axel Tuma, 2021. "Design of an endpoint indicator for mineral resource supply risks in life cycle sustainability assessment: The case of Li‐ion batteries," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1051-1062, August.
    10. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Gemina Quest & Rosalie Arendt & Christian Klemm & Vanessa Bach & Janik Budde & Peter Vennemann & Matthias Finkbeiner, 2022. "Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany," Energies, MDPI, vol. 15(16), pages 1-21, August.
    12. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    13. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    14. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    15. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Schnebele, Emily & Jaiswal, Kishor & Luco, Nicolas & Nassar, Nedal T., 2019. "Natural hazards and mineral commodity supply: Quantifying risk of earthquake disruption to South American copper supply," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    17. Guzmán, Juan Ignacio & Karpunina, Alina & Araya, Constanza & Faúndez, Patricio & Bocchetto, Marcela & Camacho, Rodolfo & Desormeaux, Daniela & Galaz, Juanita & Garcés, Ingrid & Kracht, Willy & Lagos, , 2023. "Chile: On the road to global sustainable mining," Resources Policy, Elsevier, vol. 83(C).
    18. West, James, 2020. "Extractable global resources and the future availability of metal stocks: “Known Unknowns” for the foreseeable future," Resources Policy, Elsevier, vol. 65(C).
    19. Zhou, Na & Su, Hui & Wu, Qiaosheng & Hu, Shougeng & Xu, Deyi & Yang, Danhui & Cheng, Jinhua, 2022. "China's lithium supply chain: Security dynamics and policy countermeasures," Resources Policy, Elsevier, vol. 78(C).
    20. Clement Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Seck & Marine Simoën, 2019. "Vers une Géopolitique de l'énergie plus complexe ? Une analyse prospective tridimensionnelle de la transition énergétique," Working Papers hal-02971706, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:2:y:2022:i:3:d:10.1007_s43615-022-00157-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.