IDEAS home Printed from https://ideas.repec.org/f/pha930.html
   My authors  Follow this author

Yu Hao

Personal Details

First Name:Yu
Middle Name:
Last Name:Hao
Suffix:
RePEc Short-ID:pha930
[This author has chosen not to make the email address public]

Affiliation

Center for Energy and Environmental Policy Research (CEEP)
Beijing Institute of Technology

Beijing, China
http://ceep.bit.edu.cn/

: 86-10-68918651
86-10-68918651

RePEc:edi:cebitcn (more details at EDIRC)

Research output

as
Jump to: Working papers Articles Chapters

Working papers

  1. Yu Hao & Hua Liao & Yi-Ming Wei, 2014. "Is China's carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," CEEP-BIT Working Papers 71, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  2. Yu Hao & Yi-Ming Wei, 2014. "When does the turning point in China's CO2 emissions occur? Results based on the Green Solow Model," CEEP-BIT Working Papers 73, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  3. Michael Funke & Hao Yu, 2011. "The emergence and spatial distribution of Chinese seaport cities," Quantitative Macroeconomics Working Papers 21101, Hamburg University, Department of Economics.
  4. Michael Funke & Hao Yu & Aaron Mehrota, 2011. "Tracking Chinese CPI inflation in real time," Quantitative Macroeconomics Working Papers 21112, Hamburg University, Department of Economics.
  5. Michael Funke & Hao Yu, 2009. "Economic Growth Across Chinese Provinces: In Search of Innovation-Driven Gains," Quantitative Macroeconomics Working Papers 20909, Hamburg University, Department of Economics.

Articles

  1. Michael Funke & Aaron Mehrotra & Hao Yu, 2015. "Tracking Chinese CPI inflation in real time," Empirical Economics, Springer, vol. 48(4), pages 1619-1641, June.
  2. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
  3. Zhang, Xian & Wang, Ke & Hao, Yu & Fan, Jing-Li & Wei, Yi-Ming, 2013. "The impact of government policy on preference for NEVs: The evidence from China," Energy Policy, Elsevier, vol. 61(C), pages 382-393.
  4. Funke, Michael & Yu, Hao, 2011. "The emergence and spatial distribution of Chinese seaport cities," China Economic Review, Elsevier, vol. 22(2), pages 196-209, June.

Chapters

  1. Hao Yu & Rong Han, 2016. "China Country Report," Chapters, in: Shigeru Kimura & Han Phoumin (ed.),Energy Outlook and Energy Saving Potential in East Asia 2016, chapter 5, pages 109-125, Economic Research Institute for ASEAN and East Asia (ERIA).

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Yu Hao & Hua Liao & Yi-Ming Wei, 2014. "Is China's carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," CEEP-BIT Working Papers 71, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Jie Zhang & Lu Zhang, 2016. "Impacts on CO 2 Emission Allowance Prices in China: A Quantile Regression Analysis of the Shanghai Emission Trading Scheme," Sustainability, MDPI, Open Access Journal, vol. 8(11), pages 1-12, November.
    2. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    3. Ping Wang & Bangzhu Zhu, 2016. "Estimating the Contribution of Industry Structure Adjustment to the Carbon Intensity Target: A Case of Guangdong," Sustainability, MDPI, Open Access Journal, vol. 8(4), pages 1-11, April.
    4. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, Open Access Journal, vol. 9(1), pages 1-19, January.
    5. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    6. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wu, Yinyin, 2016. "A carbon emissions reduction index: Integrating the volume and allocation of regional emissions," Applied Energy, Elsevier, vol. 184(C), pages 1154-1164.
    7. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Allocation of emission permits for China’s power plants: A systemic Pareto optimal method," Applied Energy, Elsevier, vol. 204(C), pages 607-619.
    8. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    9. Behrang Vand & Aira Hast & Sanaz Bozorg & Zelin Li & Sanna Syri & Shuai Deng, 2019. "Consumers’ Attitudes to Support Green Energy: A Case Study in Shanghai," Energies, MDPI, Open Access Journal, vol. 12(12), pages 1-20, June.
    10. Pan Zhang & Jiannan Wu, 2018. "Performance-Based or Politic-Related Decomposition of Environmental Targets: A Multilevel Analysis in China," Sustainability, MDPI, Open Access Journal, vol. 10(10), pages 1-16, September.
    11. Wu, Ya & Zhang, Wanying, 2016. "The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis," Energy Policy, Elsevier, vol. 95(C), pages 126-134.
    12. Qiang Du & Min Wu & Yadan Xu & Xinran Lu & Libiao Bai & Ming Yu, 2018. "Club convergence and spatial distribution dynamics of carbon intensity in China’s construction industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 519-536, November.
    13. Thomakos, Dimitrios D. & Alexopoulos, Thomas A., 2016. "Carbon intensity as a proxy for environmental performance and the informational content of the EPI," Energy Policy, Elsevier, vol. 94(C), pages 179-190.
    14. Karakaya, Etem & Yılmaz, Burcu & Alataş, Sedat, 2018. "How Production Based and Consumption Based Emissions Accounting Systems Change Climate Policy Analysis: The Case of CO2 Convergence," MPRA Paper 88781, University Library of Munich, Germany.
    15. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    16. Francesch-Huidobro, Maria, 2016. "Climate change and energy policies in Shanghai: A multilevel governance perspective," Applied Energy, Elsevier, vol. 164(C), pages 45-56.
    17. Hao, Yu & Peng, Hui, 2017. "On the convergence in China's provincial per capita energy consumption: New evidence from a spatial econometric analysis," Energy Economics, Elsevier, vol. 68(C), pages 31-43.
    18. Chang, Kai & Chang, Hao, 2016. "Cutting CO2 intensity targets of interprovincial emissions trading in China," Applied Energy, Elsevier, vol. 163(C), pages 211-221.
    19. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    20. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    21. Ning, Yadong & Chen, Kunkun & Zhang, Boya & Ding, Tao & Guo, Fei & Zhang, Ming, 2020. "Energy conservation and emission reduction path selection in China: A simulation based on Bi-Level multi-objective optimization model," Energy Policy, Elsevier, vol. 137(C).
    22. Wang, Zhaohua & Huang, Wanjing & Chen, Zhongfei, 2019. "The peak of CO2 emissions in China: A new approach using survival models," Energy Economics, Elsevier, vol. 81(C), pages 1099-1108.
    23. Tsun Se Cheong & Yanrui Wu & Jianxin Wu, 2016. "Evolution of carbon dioxide emissions in Chinese cities: trends and transitional dynamics," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 21(3), pages 357-377, July.
    24. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.

  2. Yu Hao & Yi-Ming Wei, 2014. "When does the turning point in China's CO2 emissions occur? Results based on the Green Solow Model," CEEP-BIT Working Papers 73, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Yu, Shiwei & Zheng, Shuhong & Li, Xia, 2018. "The achievement of the carbon emissions peak in China: The role of energy consumption structure optimization," Energy Economics, Elsevier, vol. 74(C), pages 693-707.
    2. Chang, Chun-Ping & Wen, Jun & Dong, Minyi & Hao, Yu, 2018. "Does government ideology affect environmental pollutions? New evidence from instrumental variable quantile regression estimations," Energy Policy, Elsevier, vol. 113(C), pages 386-400.
    3. Wu, Ya & Zhang, Wanying, 2016. "The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis," Energy Policy, Elsevier, vol. 95(C), pages 126-134.
    4. Hao, Yu & Peng, Hui, 2017. "On the convergence in China's provincial per capita energy consumption: New evidence from a spatial econometric analysis," Energy Economics, Elsevier, vol. 68(C), pages 31-43.
    5. Xiao-Ying Dong & Qiying Ran & Yu Hao, 2019. "On the nonlinear relationship between energy consumption and economic development in China: new evidence from panel data threshold estimations," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1837-1857, July.
    6. Hao, Yu & Liu, Yiming & Weng, Jia-Hsi & Gao, Yixuan, 2016. "Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis," Energy, Elsevier, vol. 114(C), pages 1214-1223.
    7. Lu, Zhijian & Shao, Shuai, 2016. "Impacts of government subsidies on pricing and performance level choice in Energy Performance Contracting: A two-step optimal decision model," Applied Energy, Elsevier, vol. 184(C), pages 1176-1183.
    8. Liu, Yiming & Hao, Yu & Gao, Yixuan, 2017. "The environmental consequences of domestic and foreign investment: Evidence from China," Energy Policy, Elsevier, vol. 108(C), pages 271-280.
    9. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

  3. Michael Funke & Hao Yu, 2011. "The emergence and spatial distribution of Chinese seaport cities," Quantitative Macroeconomics Working Papers 21101, Hamburg University, Department of Economics.

    Cited by:

    1. Zhao, Qianyu & Xu, Hang & Wall, Ronald S & Stavropoulos, Spyridon, 2017. "Building a bridge between port and city: Improving the urban competitiveness of port cities," Journal of Transport Geography, Elsevier, vol. 59(C), pages 120-133.

  4. Michael Funke & Hao Yu & Aaron Mehrota, 2011. "Tracking Chinese CPI inflation in real time," Quantitative Macroeconomics Working Papers 21112, Hamburg University, Department of Economics.

    Cited by:

    1. Bolan Liu & Xiaowei Ai & Pan Liu & Chuang Zhang & Xingqi Hu & Tianpu Dong, 2015. "Fuel Economy Improvement of a Heavy-Duty Powertrain by Using Hardware-in-Loop Simulation and Calibration," Energies, MDPI, Open Access Journal, vol. 8(9), pages 1-14, September.
    2. Chronis, George A., 2016. "Modelling the extreme variability of the US Consumer Price Index inflation with a stable non-symmetric distribution," Economic Modelling, Elsevier, vol. 59(C), pages 271-277.
    3. Minghong Tan, 2014. "The Transition of Farmland Production Functions in Metropolitan Areas in China," Sustainability, MDPI, Open Access Journal, vol. 6(7), pages 1-14, June.

  5. Michael Funke & Hao Yu, 2009. "Economic Growth Across Chinese Provinces: In Search of Innovation-Driven Gains," Quantitative Macroeconomics Working Papers 20909, Hamburg University, Department of Economics.

    Cited by:

    1. Zao Sun & Chun-Ping Chang & Yu Hao, 2017. "Fiscal decentralization and China’s provincial economic growth: a panel data analysis for China’s tax sharing system," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2267-2289, September.
    2. Li, Kui-Wai & Liu, Tung, 2011. "Economic and productivity growth decomposition: An application to post-reform China," Economic Modelling, Elsevier, vol. 28(1-2), pages 366-373, January.

Articles

  1. Michael Funke & Aaron Mehrotra & Hao Yu, 2015. "Tracking Chinese CPI inflation in real time," Empirical Economics, Springer, vol. 48(4), pages 1619-1641, June.
    See citations under working paper version above.
  2. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
    See citations under working paper version above.
  3. Zhang, Xian & Wang, Ke & Hao, Yu & Fan, Jing-Li & Wei, Yi-Ming, 2013. "The impact of government policy on preference for NEVs: The evidence from China," Energy Policy, Elsevier, vol. 61(C), pages 382-393.

    Cited by:

    1. Peng Cheng & Zhe Ouyang & Yang Liu, 0. "The effect of information overload on the intention of consumers to adopt electric vehicles," Transportation, Springer, vol. 0, pages 1-20.
    2. Xiaoxue Zheng & Haiyan Lin & Zhi Liu & Dengfeng Li & Carlos Llopis-Albert & Shouzhen Zeng, 2018. "Manufacturing Decisions and Government Subsidies for Electric Vehicles in China: A Maximal Social Welfare Perspective," Sustainability, MDPI, Open Access Journal, vol. 10(3), pages 1-28, March.
    3. Wenbo Li & Ruyin Long & Hong Chen & Feiyu Chen & Xiao Zheng & Muyi Yang, 2019. "Effect of Policy Incentives on the Uptake of Electric Vehicles in China," Sustainability, MDPI, Open Access Journal, vol. 11(12), pages 1-20, June.
    4. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    5. Wenbo Li & Ruyin Long & Hong Chen & Jichao Geng, 2017. "Household factors and adopting intention of battery electric vehicles: a multi-group structural equation model analysis among consumers in Jiangsu Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 945-960, June.
    6. Ye Yang & Zhongfu Tan, 2019. "Investigating the Influence of Consumer Behavior and Governmental Policy on the Diffusion of Electric Vehicles in Beijing, China," Sustainability, MDPI, Open Access Journal, vol. 11(24), pages 1-20, December.
    7. Eunsung Kim & Eunnyeong Heo, 2019. "Key Drivers behind the Adoption of Electric Vehicle in Korea: An Analysis of the Revealed Preferences," Sustainability, MDPI, Open Access Journal, vol. 11(23), pages 1-15, December.
    8. Georgina Santos, 2018. "Sustainability and Shared Mobility Models," Sustainability, MDPI, Open Access Journal, vol. 10(9), pages 1-13, September.
    9. Wang, Shanyong & Wang, Jing & Li, Jun & Wang, Jinpeng & Liang, Liang, 2018. "Policy implications for promoting the adoption of electric vehicles: Do consumer’s knowledge, perceived risk and financial incentive policy matter?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 58-69.
    10. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, Open Access Journal, vol. 12(11), pages 1-18, May.
    11. Li, Wenbo & Long, Ruyin & Chen, Hong & Yang, Tong & Geng, Jichao & Yang, Muyi, 2018. "Effects of personal carbon trading on the decision to adopt battery electric vehicles: Analysis based on a choice experiment in Jiangsu, China," Applied Energy, Elsevier, vol. 209(C), pages 478-488.
    12. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
    13. Jizi Li & Yuping Zhou & Dengke Yu & Chunling Liu, 2020. "Consumers’ Purchase Intention of New Energy Vehicles: Do Product-Life-Cycle Policy Portfolios Matter?," Sustainability, MDPI, Open Access Journal, vol. 12(5), pages 1-23, February.
    14. Li, Wenbo & Long, Ruyin & Chen, Hong, 2016. "Consumers’ evaluation of national new energy vehicle policy in China: An analysis based on a four paradigm model," Energy Policy, Elsevier, vol. 99(C), pages 33-41.
    15. She, Zhen-Yu & Qing Sun, & Ma, Jia-Jun & Xie, Bai-Chen, 2017. "What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China," Transport Policy, Elsevier, vol. 56(C), pages 29-40.
    16. Chun Yang & Jui-Che Tu & Qianling Jiang, 2020. "The Influential Factors of Consumers’ Sustainable Consumption: A Case on Electric Vehicles in China," Sustainability, MDPI, Open Access Journal, vol. 12(8), pages 1-16, April.
    17. Zhaohua Wang & Xiaoyang Dong, 2016. "Determinants and policy implications of residents’ new energy vehicle purchases: the evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 155-173, May.
    18. Jianlong Wu & Zhongji Yang & Xiaobo Hu & Hongqi Wang & Jing Huang, 2018. "Exploring Driving Forces of Sustainable Development of China’s New Energy Vehicle Industry: An Analysis from the Perspective of an Innovation Ecosystem," Sustainability, MDPI, Open Access Journal, vol. 10(12), pages 1-24, December.
    19. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    20. Wolf, Ingo & Schröder, Tobias & Neumann, Jochen & de Haan, Gerhard, 2015. "Changing minds about electric cars: An empirically grounded agent-based modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 269-285.
    21. Priessner, Alfons & Sposato, Robert & Hampl, Nina, 2018. "Predictors of electric vehicle adoption: An analysis of potential electric vehicle drivers in Austria," Energy Policy, Elsevier, vol. 122(C), pages 701-714.
    22. Jia Yao & Siqin Xiong & Xiaoming Ma, 2020. "Comparative Analysis of National Policies for Electric Vehicle Uptake Using Econometric Models," Energies, MDPI, Open Access Journal, vol. 13(14), pages 1-18, July.
    23. Han, Liu & Wang, Shanyong & Zhao, Dingtao & Li, Jun, 2017. "The intention to adopt electric vehicles: Driven by functional and non-functional values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 185-197.
    24. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    25. Zhang, Lei & Qin, Quande, 2018. "China’s new energy vehicle policies: Evolution, comparison and recommendation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 57-72.
    26. Kim, Moon-Koo & Oh, Jeesun & Park, Jong-Hyun & Joo, Changlim, 2018. "Perceived value and adoption intention for electric vehicles in Korea: Moderating effects of environmental traits and government supports," Energy, Elsevier, vol. 159(C), pages 799-809.
    27. Wang, Shanyong & Li, Jun & Zhao, Dingtao, 2017. "The impact of policy measures on consumer intention to adopt electric vehicles: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 14-26.
    28. Han-Shen Chen & Bi-Kun Tsai & Chi-Ming Hsieh, 2018. "The Effects of Perceived Barriers on Innovation Resistance of Hydrogen-Electric Motorcycles," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-15, June.
    29. Qiu, Y.Q. & Zhou, P. & Sun, H.C., 2019. "Assessing the effectiveness of city-level electric vehicle policies in China," Energy Policy, Elsevier, vol. 130(C), pages 22-31.
    30. Yueling Xu & Wenyu Zhang & Haijun Bao & Shuai Zhang & Ying Xiang, 2019. "A SEM–Neural Network Approach to Predict Customers’ Intention to Purchase Battery Electric Vehicles in China’s Zhejiang Province," Sustainability, MDPI, Open Access Journal, vol. 11(11), pages 1-19, June.
    31. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    32. Ji, Shou-feng & Zhao, Dan & Luo, Rong-juan, 2019. "Evolutionary game analysis on local governments and manufacturers' behavioral strategies: Impact of phasing out subsidies for new energy vehicles," Energy, Elsevier, vol. 189(C).

  4. Funke, Michael & Yu, Hao, 2011. "The emergence and spatial distribution of Chinese seaport cities," China Economic Review, Elsevier, vol. 22(2), pages 196-209, June.
    See citations under working paper version above.

Chapters

    Sorry, no citations of chapters recorded.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 2 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ENV: Environmental Economics (2) 2015-04-02 2015-04-02
  2. NEP-TRA: Transition Economics (2) 2015-04-02 2015-04-02
  3. NEP-CNA: China (1) 2015-04-02
  4. NEP-ENE: Energy Economics (1) 2015-04-02
  5. NEP-REG: Regulation (1) 2015-04-02

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Yu Hao should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.