IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v15y2012i04ns0219024912500318.html
   My bibliography  Save this article

Fast Computation Of Vanilla Prices In Time-Changed Models And Implied Volatilities Using Rational Approximations

Author

Listed:
  • MARTIJN PISTORIUS

    (Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK)

  • JOHANNES STOLTE

    (Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK)

Abstract

We present a new numerical method to price vanilla options quickly in time-changed Brownian motion models. The method is based on rational function approximations of the Black-Scholes formula. Detailed numerical results are given for a number of widely used models. In particular, we use the variance-gamma model, the CGMY model and the Heston model without correlation to illustrate our results. Comparison to the standard fast Fourier transform method with respect to accuracy and speed appears to favour the newly developed method in the cases considered. We present error estimates for the option prices. Additionally, we use this method to derive a procedure to compute, for a given set of arbitrage-free European call option prices, the corresponding Black-Scholes implied volatility surface. To achieve this, rational function approximations of the inverse of the Black-Scholes formula are used. We are thus able to work out implied volatilities more efficiently than one can by the use of other common methods. Error estimates are presented for a wide range of parameters.

Suggested Citation

  • Martijn Pistorius & Johannes Stolte, 2012. "Fast Computation Of Vanilla Prices In Time-Changed Models And Implied Volatilities Using Rational Approximations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-34.
  • Handle: RePEc:wsi:ijtafx:v:15:y:2012:i:04:n:s0219024912500318
    DOI: 10.1142/S0219024912500318
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024912500318
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024912500318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Lipton, 2001. "Mathematical Methods for Foreign Exchange:A Financial Engineer's Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4694, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tat Lung Chan, 2017. "Singular Fourier-Pad\'e Series Expansion of European Option Prices," Papers 1706.06709, arXiv.org, revised Nov 2017.
    2. Maximilian Gaß & Kathrin Glau & Mirco Mahlstedt & Maximilian Mair, 2018. "Chebyshev interpolation for parametric option pricing," Finance and Stochastics, Springer, vol. 22(3), pages 701-731, July.
    3. Kathrin Glau & Paul Herold & Dilip B. Madan & Christian Potz, 2017. "The Chebyshev method for the implied volatility," Papers 1710.01797, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Lipton, 2020. "Old Problems, Classical Methods, New Solutions," Papers 2003.06903, arXiv.org.
    2. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    3. A. Itkin & A. Lipton & D. Muravey, 2021. "Multilayer heat equations: application to finance," Papers 2102.08338, arXiv.org.
    4. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    5. Simon J. A. Malham & Anke Wiese, 2013. "Chi-Square Simulation Of The Cir Process And The Heston Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 1-38.
    6. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.
    7. Amengual, Dante & Xiu, Dacheng, 2018. "Resolution of policy uncertainty and sudden declines in volatility," Journal of Econometrics, Elsevier, vol. 203(2), pages 297-315.
    8. Andrey Itkin & Dmitry Muravey, 2023. "American options in time-dependent one-factor models: Semi-analytic pricing, numerical methods and ML support," Papers 2307.13870, arXiv.org.
    9. Andrey Itkin, 2015. "HIGH ORDER SPLITTING METHODS FOR FORWARD PDEs AND PIDEs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-24.
    10. P. Carr & A. Itkin & D. Muravey, 2022. "Semi-analytical pricing of barrier options in the time-dependent Heston model," Papers 2202.06177, arXiv.org.
    11. Alexander Lipton, 2023. "Kelvin Waves, Klein-Kramers and Kolmogorov Equations, Path-Dependent Financial Instruments: Survey and New Results," Papers 2309.04547, arXiv.org.
    12. Sam Howison & Avraam Rafailidis & Henrik Rasmussen, 2004. "On the pricing and hedging of volatility derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 317-346.
    13. Leif Andersen & Alexander Lipton, 2013. "Asymptotics For Exponential Lévy Processes And Their Volatility Smile: Survey And New Results," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-98.
    14. Susanne Griebsch & Uwe Wystup, 2011. "Quantitative Finance, Vol. 11, No. 5, May 2011, 693-709 On the valuation of fader and discrete barrier options in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1271-1271.
    15. Alexander Lipton & Marcos Lopez de Prado, 2020. "A closed-form solution for optimal mean-reverting trading strategies," Papers 2003.10502, arXiv.org.
    16. A. Itkin & A. Lipton & D. Muravey, 2020. "From the Black-Karasinski to the Verhulst model to accommodate the unconventional Fed's policy," Papers 2006.11976, arXiv.org, revised Jan 2021.
    17. Sudip Ratan Chandra & Diganta Mukherjee, 2016. "Barrier Option Under Lévy Model : A PIDE and Mellin Transform Approach," Mathematics, MDPI, vol. 4(1), pages 1-18, January.
    18. Likuan Qin & Vadim Linetsky, 2016. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery, and Long-Term Pricing," Operations Research, INFORMS, vol. 64(1), pages 99-117, February.
    19. Peter Buchen & Hamish Malloch, 2014. "CLA's, PLA's and a new method for pricing general passport options," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1201-1209, July.
    20. Cao, Jiling & Kim, Jeong-Hoon & Kim, See-Woo & Zhang, Wenjun, 2020. "Rough stochastic elasticity of variance and option pricing," Finance Research Letters, Elsevier, vol. 37(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:15:y:2012:i:04:n:s0219024912500318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.