IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v32y2015i06ns0217595915500426.html
   My bibliography  Save this article

Analysis of a MAP/PH/1 Queue with Discretionary Priority Based on Service Stages

Author

Listed:
  • Ning Zhao

    (Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, P. R. China)

  • Zhaotong Lian

    (Faculty of Business Administration, University of Macau, Macau, P. R. China)

  • Kan Wu

    (School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore)

Abstract

In this paper, we study a MAP/PH/1 queue with two classes of customers and discretionary priority. There are two stages of service for the low-priority customer. The server adopts the preemptive priority discipline at the first stage and adopts the nonpreemptive priority discipline at the second stage. Such a queuing system can be modeled into a quasi-birth-and-death (QBD) process. But there is no general solution for this QBD process since the generator matrix has a block structure with an infinite number of blocks and each block has infinite dimensions. We present an approach to derive the bound for the high-priority queue length. It guarantees that the probabilities of ignored states are within a given error bound, so that the system can be modeled into a QBD process where the block elements of the generator matrix have finite dimensions. The sojourn time distributions of both high and low priority customers are obtained. Some managerial insights are given after comparing the discretionary priority rule with the preemptive and nonpreemptive disciplines numerically.

Suggested Citation

  • Ning Zhao & Zhaotong Lian & Kan Wu, 2015. "Analysis of a MAP/PH/1 Queue with Discretionary Priority Based on Service Stages," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-22, December.
  • Handle: RePEc:wsi:apjorx:v:32:y:2015:i:06:n:s0217595915500426
    DOI: 10.1142/S0217595915500426
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595915500426
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595915500426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kilhwan & Chae, Kyung C., 2010. "Discrete-time queues with discretionary priorities," European Journal of Operational Research, Elsevier, vol. 200(2), pages 473-485, January.
    2. B. Kumar & A. Vijayakumar & D. Arivudainambi, 2002. "An M/G/1 Retrial Queueing System with Two-Phase Service and Preemptive Resume," Annals of Operations Research, Springer, vol. 113(1), pages 61-79, July.
    3. Morris A. Cohen & Paul R. Kleindorfer & Hau L. Lee, 1988. "Service Constrained (s, S) Inventory Systems with Priority Demand Classes and Lost Sales," Management Science, INFORMS, vol. 34(4), pages 482-499, April.
    4. Martin Paterok & Markus Ettl, 1994. "Sojourn Time and Waiting Time Distributions for M/GI/1 Queues with Preemption-Distance Priorities," Operations Research, INFORMS, vol. 42(6), pages 1146-1161, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    2. Mario Guajardo & Mikael Rönnqvist & Ann Mari Halvorsen & Svein Inge Kallevik, 2015. "Inventory management of spare parts in an energy company," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(2), pages 331-341, February.
    3. Bendre, Abhijit Bhagwan & Nielsen, Lars Relund, 2013. "Inventory control in a lost-sales setting with information about supply lead times," International Journal of Production Economics, Elsevier, vol. 142(2), pages 324-331.
    4. ElHafsi, Mohsen & Camus, Herve & Craye, Etienne, 2010. "Managing an integrated production inventory system with information on the production and demand status and multiple non-unitary demand classes," European Journal of Operational Research, Elsevier, vol. 207(2), pages 986-1001, December.
    5. Ayanso, Anteneh & Diaby, Moustapha & Nair, Suresh K., 2006. "Inventory rationing via drop-shipping in Internet retailing: A sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 171(1), pages 135-152, May.
    6. Paul Zipkin, 2008. "Old and New Methods for Lost-Sales Inventory Systems," Operations Research, INFORMS, vol. 56(5), pages 1256-1263, October.
    7. Mor Armony & Erica Plambeck & Sridhar Seshadri, 2009. "Sensitivity of Optimal Capacity to Customer Impatience in an Unobservable M/M/S Queue (Why You Shouldn't Shout at the DMV)," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 19-32, June.
    8. Vinayak Deshpande & Morris A. Cohen & Karen Donohue, 2003. "An Empirical Study of Service Differentiation for Weapon System Service Parts," Operations Research, INFORMS, vol. 51(4), pages 518-530, August.
    9. Sofia Estelles-Miguel & Manuel Cardos & Jose Miguel Albarracin Guillem & Marta Palmer Gato, 2014. "Calculation of the Approaches to Cycle Service Level in Continuous Review Policy: A Tool for Corporate Entrepreneur," Business and Management Research, Business and Management Research, Sciedu Press, vol. 3(1), pages 54-60, March.
    10. ElHafsi, Mohsen & Fang, Jianxin & Hamouda, Essia, 2021. "Optimal production and inventory control of multi-class mixed backorder and lost sales demand class models," European Journal of Operational Research, Elsevier, vol. 291(1), pages 147-161.
    11. Tamer Boyacı & Guillermo Gallego, 2002. "Managing waiting times of backordered demands in single‐stage (Q, r) inventory systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 557-573, September.
    12. Steve Drekic & David A. Stanford, 2001. "Reducing Delay in Preemptive Repeat Priority Queues," Operations Research, INFORMS, vol. 49(1), pages 145-156, February.
    13. Alfieri, Arianna & Pastore, Erica & Zotteri, Giulio, 2017. "Dynamic inventory rationing: How to allocate stock according to managerial priorities. An empirical study," International Journal of Production Economics, Elsevier, vol. 189(C), pages 14-29.
    14. Morris A. Cohen & Paul R. Kleindorfer & Hau L. Lee & David F. Pyke, 1992. "Multi‐item service constrained (s, S) policies for spare parts logistics systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(4), pages 561-577, June.
    15. Albert Y. Ha, 1997. "Stock‐rationing policy for a make‐to‐stock production system with two priority classes and backordering," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(5), pages 457-472, August.
    16. Alex X. Zhang, 1997. "Demand Fulfillment Rates In An Assembleto‐ Order System With Multiple Products And Dependent Demands," Production and Operations Management, Production and Operations Management Society, vol. 6(3), pages 309-324, September.
    17. Francis de Véricourt & Fikri Karaesmen & Yves Dallery, 2002. "Optimal Stock Allocation for a Capacitated Supply System," Management Science, INFORMS, vol. 48(11), pages 1486-1501, November.
    18. Dellaert, N. P. & Melo, M. T., 1998. "Make-to-order policies for a stochastic lot-sizing problem using overtime," International Journal of Production Economics, Elsevier, vol. 56(1), pages 79-97, September.
    19. Jing, Hao & Sheng, Lijuan & Luo, Chaorui & Kwak, Choonjong, 2021. "Statistical analysis of family based dispatching rules and preemption," International Journal of Production Economics, Elsevier, vol. 240(C).
    20. Qing Ding & Panos Kouvelis & Joseph M. Milner, 2006. "Dynamic Pricing Through Discounts for Optimizing Multiple-Class Demand Fulfillment," Operations Research, INFORMS, vol. 54(1), pages 169-183, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:32:y:2015:i:06:n:s0217595915500426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.