IDEAS home Printed from https://ideas.repec.org/a/wly/wirecc/v12y2021i1ne682.html
   My bibliography  Save this article

Antarctic ecosystem responses following ice‐shelf collapse and iceberg calving: Science review and future research

Author

Listed:
  • Jeroen Ingels
  • Richard B. Aronson
  • Craig R. Smith
  • Amy Baco
  • Holly M. Bik
  • James A. Blake
  • Angelika Brandt
  • Mattias Cape
  • David Demaster
  • Emily Dolan
  • Eugene Domack
  • Spencer Fire
  • Heidi Geisz
  • Michael Gigliotti
  • Huw Griffiths
  • Kenneth M. Halanych
  • Charlotte Havermans
  • Falk Huettmann
  • Scott Ishman
  • Sven A. Kranz
  • Amy Leventer
  • Andrew R. Mahon
  • James McClintock
  • Michael L. McCormick
  • B. Greg Mitchell
  • Alison E. Murray
  • Lloyd Peck
  • Alex Rogers
  • Barbara Shoplock
  • Kathryn E. Smith
  • Brittan Steffel
  • Michael R. Stukel
  • Andrew K. Sweetman
  • Michelle Taylor
  • Andrew R. Thurber
  • Martin Truffer
  • Anton van de Putte
  • Ann Vanreusel
  • Maria Angelica Zamora‐Duran

Abstract

The calving of A‐68, the 5,800‐km2, 1‐trillion‐ton iceberg shed from the Larsen C Ice Shelf in July 2017, is one of over 10 significant ice‐shelf loss events in the past few decades resulting from rapid warming around the Antarctic Peninsula. The rapid thinning, retreat, and collapse of ice shelves along the Antarctic Peninsula are harbingers of warming effects around the entire continent. Ice shelves cover more than 1.5 million km2 and fringe 75% of Antarctica's coastline, delineating the primary connections between the Antarctic continent, the continental ice, and the Southern Ocean. Changes in Antarctic ice shelves bring dramatic and large‐scale modifications to Southern Ocean ecosystems and continental ice movements, with global‐scale implications. The thinning and rate of future ice‐shelf demise is notoriously unpredictable, but models suggest increased shelf‐melt and calving will become more common. To date, little is known about sub‐ice‐shelf ecosystems, and our understanding of ecosystem change following collapse and calving is predominantly based on responsive science once collapses have occurred. In this review, we outline what is known about (a) ice‐shelf melt, volume loss, retreat, and calving, (b) ice‐shelf‐associated ecosystems through sub‐ice, sediment‐core, and pre‐collapse and post‐collapse studies, and (c) ecological responses in pelagic, sympagic, and benthic ecosystems. We then discuss major knowledge gaps and how science might address these gaps. This article is categorized under: Climate, Ecology, and Conservation > Modeling Species and Community Interactions

Suggested Citation

  • Jeroen Ingels & Richard B. Aronson & Craig R. Smith & Amy Baco & Holly M. Bik & James A. Blake & Angelika Brandt & Mattias Cape & David Demaster & Emily Dolan & Eugene Domack & Spencer Fire & Heidi Ge, 2021. "Antarctic ecosystem responses following ice‐shelf collapse and iceberg calving: Science review and future research," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
  • Handle: RePEc:wly:wirecc:v:12:y:2021:i:1:n:e682
    DOI: 10.1002/wcc.682
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wcc.682
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wcc.682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. A. Depoorter & J. L. Bamber & J. A. Griggs & J. T. M. Lenaerts & S. R. M. Ligtenberg & M. R. van den Broeke & G. Moholdt, 2013. "Calving fluxes and basal melt rates of Antarctic ice shelves," Nature, Nature, vol. 502(7469), pages 89-92, October.
    2. Johannes Jakob Fürst & Gaël Durand & Fabien Gillet-Chaulet & Laure Tavard & Melanie Rankl & Matthias Braun & Olivier Gagliardini, 2016. "The safety band of Antarctic ice shelves," Nature Climate Change, Nature, vol. 6(5), pages 479-482, May.
    3. Ching-Yao Lai & Jonathan Kingslake & Martin G. Wearing & Po-Hsuan Cameron Chen & Pierre Gentine & Harold Li & Julian J. Spergel & J. Melchior Wessem, 2020. "Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture," Nature, Nature, vol. 584(7822), pages 574-578, August.
    4. Grace K. Saba & William R. Fraser & Vincent S. Saba & Richard A. Iannuzzi & Kaycee E. Coleman & Scott C. Doney & Hugh W. Ducklow & Douglas G. Martinson & Travis N. Miles & Donna L. Patterson-Fraser & , 2014. "Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    5. Angus Atkinson & Volker Siegel & Evgeny Pakhomov & Peter Rothery, 2004. "Long-term decline in krill stock and increase in salps within the Southern Ocean," Nature, Nature, vol. 432(7013), pages 100-103, November.
    6. E. L. Cavan & A. Belcher & A. Atkinson & S. L. Hill & S. Kawaguchi & S. McCormack & B. Meyer & S. Nicol & L. Ratnarajah & K. Schmidt & D. K. Steinberg & G. A. Tarling & P. W. Boyd, 2019. "Author Correction: The importance of Antarctic krill in biogeochemical cycles," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    7. Robert M. DeConto & David Pollard, 2016. "Contribution of Antarctica to past and future sea-level rise," Nature, Nature, vol. 531(7596), pages 591-597, March.
    8. Angus Atkinson & Simeon L. Hill & Evgeny A. Pakhomov & Volker Siegel & Christian S. Reiss & Valerie J. Loeb & Deborah K. Steinberg & Katrin Schmidt & Geraint A. Tarling & Laura Gerrish & Sévrine F. Sa, 2019. "Krill (Euphausia superba) distribution contracts southward during rapid regional warming," Nature Climate Change, Nature, vol. 9(2), pages 142-147, February.
    9. Jeroen Ingels & Richard B. Aronson & Craig R. Smith, 2018. "The scientific response to Antarctic ice-shelf loss," Nature Climate Change, Nature, vol. 8(10), pages 848-851, October.
    10. Anna E. Hogg & G. Hilmar Gudmundsson, 2017. "Impacts of the Larsen-C Ice Shelf calving event," Nature Climate Change, Nature, vol. 7(8), pages 540-542, August.
    11. Andy Hodson & Aga Nowak & Marie Sabacka & Anne Jungblut & Francisco Navarro & David Pearce & María Luisa Ávila-Jiménez & Peter Convey & Gonçalo Vieira, 2017. "Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    12. Eugene Domack & Diana Duran & Amy Leventer & Scott Ishman & Sarah Doane & Scott McCallum & David Amblas & Jim Ring & Robert Gilbert & Michael Prentice, 2005. "Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch," Nature, Nature, vol. 436(7051), pages 681-685, August.
    13. Mark J. Hopwood & Dustin Carroll & Juan Höfer & Eric P. Achterberg & Lorenz Meire & Frédéric A. C. Moigne & Lennart T. Bach & Charlotte Eich & David A. Sutherland & Humberto E. González, 2019. "Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    14. M. A. Depoorter & J. L. Bamber & J. A. Griggs & J. T. M. Lenaerts & S. R. M. Ligtenberg & M. R. van den Broeke & G. Moholdt, 2013. "Correction: Corrigendum: Calving fluxes and basal melt rates of Antarctic ice shelves," Nature, Nature, vol. 502(7472), pages 580-580, October.
    15. H. D. Pritchard & S. R. M. Ligtenberg & H. A. Fricker & D. G. Vaughan & M. R. van den Broeke & L. Padman, 2012. "Antarctic ice-sheet loss driven by basal melting of ice shelves," Nature, Nature, vol. 484(7395), pages 502-505, April.
    16. Olivier Gagliardini, 2018. "The health of Antarctic ice shelves," Nature Climate Change, Nature, vol. 8(1), pages 15-16, January.
    17. J. T. M. Lenaerts & S. Lhermitte & R. Drews & S. R. M. Ligtenberg & S. Berger & V. Helm & C. J. P. P. Smeets & M. R. van den Broeke & W. J. van de Berg & E. van Meijgaard & M. Eijkelboom & O. Eisen & , 2017. "Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf," Nature Climate Change, Nature, vol. 7(1), pages 58-62, January.
    18. E. L. Cavan & A. Belcher & A. Atkinson & S. L. Hill & S. Kawaguchi & S. McCormack & B. Meyer & S. Nicol & L. Ratnarajah & K. Schmidt & D. K. Steinberg & G. A. Tarling & P. W. Boyd, 2019. "The importance of Antarctic krill in biogeochemical cycles," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavenia Ratnarajah & Rana Abu-Alhaija & Angus Atkinson & Sonia Batten & Nicholas J. Bax & Kim S. Bernard & Gabrielle Canonico & Astrid Cornils & Jason D. Everett & Maria Grigoratou & Nurul Huda Ahmad , 2023. "Monitoring and modelling marine zooplankton in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Nora-Charlotte Pauli & Clara M. Flintrop & Christian Konrad & Evgeny A. Pakhomov & Steffen Swoboda & Florian Koch & Xin-Liang Wang & Ji-Chang Zhang & Andrew S. Brierley & Matteo Bernasconi & Bettina M, 2021. "Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. H. W. Yang & T.-W. Kim & Pierre Dutrieux & A. K. Wåhlin & Adrian Jenkins & H. K. Ha & C. S. Kim & K.-H. Cho & T. Park & S. H. Lee & Y.-K. Cho, 2022. "Seasonal variability of ocean circulation near the Dotson Ice Shelf, Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Mutsumi Iizuka & Osamu Seki & David J. Wilson & Yusuke Suganuma & Keiji Horikawa & Tina Flierdt & Minoru Ikehara & Takuya Itaki & Tomohisa Irino & Masanobu Yamamoto & Motohiro Hirabayashi & Hiroyuki M, 2023. "Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. J. Sutter & A. Jones & T. L. Frölicher & C. Wirths & T. F. Stocker, 2023. "Climate intervention on a high-emissions pathway could delay but not prevent West Antarctic Ice Sheet demise," Nature Climate Change, Nature, vol. 13(9), pages 951-960, September.
    7. Jennifer F. Arthur & Chris R. Stokes & Stewart S. R. Jamieson & J. Rachel Carr & Amber A. Leeson & Vincent Verjans, 2022. "Large interannual variability in supraglacial lakes around East Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Simon Dietz & Felix Koninx, 2022. "Economic impacts of melting of the Antarctic Ice Sheet," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Michael E. Weber & Nicholas R. Golledge & Chris J. Fogwill & Chris S. M. Turney & Zoë A. Thomas, 2021. "Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    11. Patara, Lavinia & Vichi, Marcello & Masina, Simona, 2012. "Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model," Ecological Modelling, Elsevier, vol. 244(C), pages 132-147.
    12. Cara Nissen & Ralph Timmermann & Mario Hoppema & Özgür Gürses & Judith Hauck, 2022. "Abruptly attenuated carbon sequestration with Weddell Sea dense waters by 2100," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    14. Adam D. Sproson & Yusuke Yokoyama & Yosuke Miyairi & Takahiro Aze & Rebecca L. Totten, 2022. "Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    16. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    17. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    18. Julian David Hunt & Edward Byers, 2019. "Reducing sea level rise with submerged barriers and dams in Greenland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 779-794, June.
    19. Frankie St. Amand & Daniel H. Sandweiss & Alice R. Kelley, 2020. "Climate-driven migration: prioritizing cultural resources threatened by secondary impacts of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1761-1781, September.
    20. Kristina Hill, 2016. "Climate Change: Implications for the Assumptions, Goals and Methods of Urban Environmental Planning," Urban Planning, Cogitatio Press, vol. 1(4), pages 103-113.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:wirecc:v:12:y:2021:i:1:n:e682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1757-7799 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.