IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i2d10.1038_s41558-018-0370-z.html
   My bibliography  Save this article

Krill (Euphausia superba) distribution contracts southward during rapid regional warming

Author

Listed:
  • Angus Atkinson

    (Plymouth Marine Laboratory)

  • Simeon L. Hill

    (British Antarctic Survey)

  • Evgeny A. Pakhomov

    (University of British Columbia
    University of British Columbia
    Hakai Institute)

  • Volker Siegel

    (Thuenen Institute of Sea Fisheries)

  • Christian S. Reiss

    (NOAA Fisheries)

  • Valerie J. Loeb

    (Moss Landing Marine Laboratories)

  • Deborah K. Steinberg

    (College of William & Mary)

  • Katrin Schmidt

    (University of Plymouth)

  • Geraint A. Tarling

    (British Antarctic Survey)

  • Laura Gerrish

    (British Antarctic Survey)

  • Sévrine F. Sailley

    (Plymouth Marine Laboratory)

Abstract

High-latitude ecosystems are among the fastest warming on the planet1. Polar species may be sensitive to warming and ice loss, but data are scarce and evidence is conflicting2–4. Here, we show that, within their main population centre in the southwest Atlantic sector, the distribution of Euphausia superba (hereafter, ‘krill’) has contracted southward over the past 90 years. Near their northern limit, numerical densities have declined sharply and the population has become more concentrated towards the Antarctic shelves. A concomitant increase in mean body length reflects reduced recruitment of juvenile krill. We found evidence for environmental controls on recruitment, including a reduced density of juveniles following positive anomalies of the Southern Annular Mode. Such anomalies are associated with warm, windy and cloudy weather and reduced sea ice, all of which may hinder egg production and the survival of larval krill5. However, the total post-larval density has declined less steeply than the density of recruits, suggesting that survival rates of older krill have increased. The changing distribution is already perturbing the krill-centred food web6 and may affect biogeochemical cycling7,8. Rapid climate change, with associated nonlinear adjustments in the roles of keystone species, poses challenges for the management of valuable polar ecosystems3.

Suggested Citation

  • Angus Atkinson & Simeon L. Hill & Evgeny A. Pakhomov & Volker Siegel & Christian S. Reiss & Valerie J. Loeb & Deborah K. Steinberg & Katrin Schmidt & Geraint A. Tarling & Laura Gerrish & Sévrine F. Sa, 2019. "Krill (Euphausia superba) distribution contracts southward during rapid regional warming," Nature Climate Change, Nature, vol. 9(2), pages 142-147, February.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:2:d:10.1038_s41558-018-0370-z
    DOI: 10.1038/s41558-018-0370-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-018-0370-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-018-0370-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nora-Charlotte Pauli & Clara M. Flintrop & Christian Konrad & Evgeny A. Pakhomov & Steffen Swoboda & Florian Koch & Xin-Liang Wang & Ji-Chang Zhang & Andrew S. Brierley & Matteo Bernasconi & Bettina M, 2021. "Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. M. S. Clark & J. I. Hoffman & L. S. Peck & L. Bargelloni & D. Gande & C. Havermans & B. Meyer & T. Patarnello & T. Phillips & K. R. Stoof-Leichsenring & D. L. J. Vendrami & A. Beck & G. Collins & M. W, 2023. "Multi-omics for studying and understanding polar life," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Lavenia Ratnarajah & Rana Abu-Alhaija & Angus Atkinson & Sonia Batten & Nicholas J. Bax & Kim S. Bernard & Gabrielle Canonico & Astrid Cornils & Jason D. Everett & Maria Grigoratou & Nurul Huda Ahmad , 2023. "Monitoring and modelling marine zooplankton in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Jeroen Ingels & Richard B. Aronson & Craig R. Smith & Amy Baco & Holly M. Bik & James A. Blake & Angelika Brandt & Mattias Cape & David Demaster & Emily Dolan & Eugene Domack & Spencer Fire & Heidi Ge, 2021. "Antarctic ecosystem responses following ice‐shelf collapse and iceberg calving: Science review and future research," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:2:d:10.1038_s41558-018-0370-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.