IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0295677.html
   My bibliography  Save this article

Variations of intact phospholipid compositions in the digestive system of Antarctic krill, Euphausia superba, between summer and autumn

Author

Listed:
  • Simone Heyen
  • Vivien Schneider
  • Lukas Hüppe
  • Bettina Meyer
  • Heinz Wilkes

Abstract

The biochemical composition of Antarctic krill, Euphausia superba, is largely determined by their feeding behaviour. As they supply energy for animals of a higher trophic level and are also commercialized for human consumption, the interest in research on the species is high. Lipids, especially phospholipids, make up a high proportion of dry weight in krill. Seasonal changes are well documented in the fingerprint of free fatty acids analysed after hydrolysis of phospholipids, but the underlying intact polar lipids are rarely considered. In this study, we evaluated the compositions of intact phospholipids (IPLs) in the stomach, digestive gland and hind gut of Antarctic krill caught in summer and autumn at the Antarctic Peninsula region. Using high-resolution mass spectrometry, the fatty acid composition of 179 intact phospholipids could be resolved. Most IPLs were phosphatidylcholines, followed by phosphatidylethanolamines. Several very long chain polyunsaturated fatty acids up to 38:8, which have not been reported in krill before, were identified. The composition shifted to higher molecular weight IPLs with a higher degree of unsaturation for summer samples, especially for samples of the digestive gland. The data supplied in this paper provides new insights into lipid dynamics between summer and autumn usually described by free fatty acid biomarkers.

Suggested Citation

  • Simone Heyen & Vivien Schneider & Lukas Hüppe & Bettina Meyer & Heinz Wilkes, 2023. "Variations of intact phospholipid compositions in the digestive system of Antarctic krill, Euphausia superba, between summer and autumn," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0295677
    DOI: 10.1371/journal.pone.0295677
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295677
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295677&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0295677?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. L. Cavan & A. Belcher & A. Atkinson & S. L. Hill & S. Kawaguchi & S. McCormack & B. Meyer & S. Nicol & L. Ratnarajah & K. Schmidt & D. K. Steinberg & G. A. Tarling & P. W. Boyd, 2019. "Author Correction: The importance of Antarctic krill in biogeochemical cycles," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    2. E. L. Cavan & A. Belcher & A. Atkinson & S. L. Hill & S. Kawaguchi & S. McCormack & B. Meyer & S. Nicol & L. Ratnarajah & K. Schmidt & D. K. Steinberg & G. A. Tarling & P. W. Boyd, 2019. "The importance of Antarctic krill in biogeochemical cycles," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nora-Charlotte Pauli & Clara M. Flintrop & Christian Konrad & Evgeny A. Pakhomov & Steffen Swoboda & Florian Koch & Xin-Liang Wang & Ji-Chang Zhang & Andrew S. Brierley & Matteo Bernasconi & Bettina M, 2021. "Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Martin J Cox & Gavin Macaulay & Madeleine J Brasier & Alicia Burns & Olivia J Johnson & Rob King & Dale Maschette & Jessica Melvin & Abigail J R Smith & Christine K Weldrick & Simon Wotherspoon & So K, 2022. "Two scales of distribution and biomass of Antarctic krill (Euphausia superba) in the eastern sector of the CCAMLR Division 58.4.2 (55°E to 80°E)," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-19, August.
    3. Lavenia Ratnarajah & Rana Abu-Alhaija & Angus Atkinson & Sonia Batten & Nicholas J. Bax & Kim S. Bernard & Gabrielle Canonico & Astrid Cornils & Jason D. Everett & Maria Grigoratou & Nurul Huda Ahmad , 2023. "Monitoring and modelling marine zooplankton in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. E. L. Cavan & N. Mackay & S. L. Hill & A. Atkinson & A. Belcher & A. Visser, 2024. "Antarctic krill sequester similar amounts of carbon to key coastal blue carbon habitats," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Matthew S. Savoca & Mehr Kumar & Zephyr Sylvester & Max F. Czapanskiy & Bettina Meyer & Jeremy A. Goldbogen & Cassandra M. Brooks, 2024. "Whale recovery and the emerging human-wildlife conflict over Antarctic krill," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Jeroen Ingels & Richard B. Aronson & Craig R. Smith & Amy Baco & Holly M. Bik & James A. Blake & Angelika Brandt & Mattias Cape & David Demaster & Emily Dolan & Eugene Domack & Spencer Fire & Heidi Ge, 2021. "Antarctic ecosystem responses following ice‐shelf collapse and iceberg calving: Science review and future research," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.