IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v23y2020i4p492-515.html
   My bibliography  Save this article

A system concept representation framework and its testing on patents, urban architectural patterns, and software patterns

Author

Listed:
  • Yaroslav Menshenin
  • Edward Crawley

Abstract

The development of a concept for a system is a key step toward creating the system's architecture. Most previous concept development approaches focus on the procedures for the conceptual design activity—the sequence of activities and tasks. Our work is motivated by the desire to elaborate in details the notional content of a system concept and to provide the means of encoding and analyzing it in a digital environment. The objective of this work is to develop a system concept representation framework that can systematically represent the concept's constituents, their definitions, and interconnections. In order to demonstrate the utility of this framework, we have conducted three studies: mapped eight selected US patents, nine selected urban architectural patterns, and three selected software patterns to the framework. Patents, urban architectural patterns, and software patterns each contain a rich body of knowledge about the system they describe, and therefore they must logically contain a description of the concepts underlying them. We show that the main features of proposed framework can be found in patents, urban architectural patterns, and software patterns. The major utility of the framework is that it provides the means to encode existing system concepts and to inform the conceptual design of new systems, contributing to the INCOSE Model‐Based Conceptual Design initiative.

Suggested Citation

  • Yaroslav Menshenin & Edward Crawley, 2020. "A system concept representation framework and its testing on patents, urban architectural patterns, and software patterns," Systems Engineering, John Wiley & Sons, vol. 23(4), pages 492-515, July.
  • Handle: RePEc:wly:syseng:v:23:y:2020:i:4:p:492-515
    DOI: 10.1002/sys.21547
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21547
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eppinger, Steven D. & Browning, Tyson R., 2012. "Design Structure Matrix Methods and Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262017520, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uwe Beyer & Oliver Ullrich, 2022. "Organizational Complexity as a Contributing Factor to Underperformance," Businesses, MDPI, vol. 2(1), pages 1-15, March.
    2. Morgan Dwyer & Bruce Cameron & Zoe Szajnfarber, 2015. "A Framework for Studying Cost Growth on Complex Acquisition Programs," Systems Engineering, John Wiley & Sons, vol. 18(6), pages 568-583, November.
    3. Félicia Saïah & Diego Vega & Harwin de Vries & Joakim Kembro, 2023. "Process modularity, supply chain responsiveness, and moderators: The Médecins Sans Frontières response to the Covid‐19 pandemic," Production and Operations Management, Production and Operations Management Society, vol. 32(5), pages 1490-1511, May.
    4. Junguang Zhang & Xiwei Song & Hongyu Chen & Ruixia (Sandy) Shi, 2016. "Determination of critical chain project buffer based on information flow interactions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1146-1157, September.
    5. Liu, Zhixue & Ding, Ronggui & Wang, Lei & Song, Rui & Song, Xinyi, 2023. "Cooperation in an uncertain environment: The impact of stakeholders' concerted action on collaborative innovation projects risk management," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Robert Schmidt & Kasper Sanchez Vibaek & Simon Austin, 2014. "Evaluating the adaptability of an industrialized building using dependency structure matrices," Construction Management and Economics, Taylor & Francis Journals, vol. 32(1-2), pages 160-182, February.
    7. Subarna Basnet & Christopher L Magee, 2017. "Artifact interactions retard technological improvement: An empirical study," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
    8. Kaushik Sinha & Seok‐Youn Han & Eun Suk Suh, 2020. "Design structure matrix‐based modularization approach for complex systems with multiple design constraints," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 211-220, March.
    9. David A. Broniatowski, 2018. "Building the tower without climbing it: Progress in engineering systems," Systems Engineering, John Wiley & Sons, vol. 21(3), pages 259-281, May.
    10. Samina Karim & Chi‐Hyon Lee & Manuela N. Hoehn‐Weiss, 2023. "Task bottlenecks and resource bottlenecks: A holistic examination of task systems through an organization design lens," Strategic Management Journal, Wiley Blackwell, vol. 44(8), pages 1839-1878, August.
    11. Jyh-Rong Chou, 2021. "A Scoping Review of Ontologies Relevant to Design Strategies in Response to the UN Sustainable Development Goals (SDGs)," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    12. Mark P. De Lessio & Michel‐Alexandre Cardin & Angel Astaman & Valerie Djie, 2015. "A Process to Analyze Strategic Design and Management Decisions Under Uncertainty in Complex Entrepreneurial Systems," Systems Engineering, John Wiley & Sons, vol. 18(6), pages 604-624, November.
    13. Walid F. Nasrallah & Charbel J. Ouba & Ali A. Yassine & Issam M. Srour, 2015. "Modeling the span of control of leaders with different skill sets," Computational and Mathematical Organization Theory, Springer, vol. 21(3), pages 296-317, September.
    14. Juntao Zhang & Cecilia Haskins & Yiliu Liu & Mary Ann Lundteigen, 2018. "A systems engineering–based approach for framing reliability, availability, and maintainability: A case study for subsea design," Systems Engineering, John Wiley & Sons, vol. 21(6), pages 576-592, November.
    15. Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    16. Khraisha, Tamer, 2020. "Complex economic problems and fitness landscapes: Assessment and methodological perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 390-407.
    17. Andreas Poller, 2020. "Exploring and managing the complexity of large infrastructure projects with network theory and model‐based systems engineering—The example of radioactive waste disposal," Systems Engineering, John Wiley & Sons, vol. 23(4), pages 443-459, July.
    18. Jeremy Faludi & Steven Hoffenson & Sze Yin Kwok & Michael Saidani & Sophie I. Hallstedt & Cassandra Telenko & Victor Martinez, 2020. "A Research Roadmap for Sustainable Design Methods and Tools," Sustainability, MDPI, vol. 12(19), pages 1-28, October.
    19. Lin, Jun & Qian, Yanjun & Cui, Wentian & Goh, Thong Ngee, 2015. "An effective approach for scheduling coupled activities in development projects," European Journal of Operational Research, Elsevier, vol. 243(1), pages 97-108.
    20. Jeeeun Kim & Sungjoo Lee, 2017. "Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 47-65, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:23:y:2020:i:4:p:492-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.