IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v13y2010i2p186-203.html
   My bibliography  Save this article

Technology infusion for complex systems: A framework and case study

Author

Listed:
  • Eun Suk Suh
  • Michael R. Furst
  • Kenneth J. Mihalyov
  • Olivier de Weck

Abstract

Manufacturing companies in today's competitive environment constantly need to develop new technologies and infuse them into their line of products to stay ahead of the competition. Most new technologies only deliver value once they are successfully infused into a parent system. However, there has been little research done to develop formal methods to assess the impact of new technology infusion into existing products and systems. In this paper, a systematic framework to quantify and assess the impact of technology infusion early in the product planning cycle is proposed. The proposed methodology quantitatively estimates the impact of technology infusion through the use of a Design Structure Matrix (DSM) and the creation of a Delta DSM (ΔDSM) describing the changes to the original system due to the infused technology. The cost for technology infusion is then estimated from the ΔDSM, and the potential market impact of the technology is calculated based on customer value, expressed through utility curves for system technical performance measures. Finally, the probabilistic ΔNPV of a newly infused technology is obtained using Monte Carlo simulation. The proposed methodology was demonstrated on an actual complex printing system, represented as an 84 element DSM with a density of 3.7%, where a newly developed value‐enhancing technology was infused into the existing product. The result shows that a positive marginal net present value ΔNPV can be expected, despite the new technology causing an invasiveness of 8.5% to the existing design. The methodology can be applied in a rigorous and repeatable manner, opening up possibilities for further implementation of the proposed framework, including analysis of the interactions amongst multiple technologies. © 2009 Wiley Periodicals, Inc. Syst Eng

Suggested Citation

  • Eun Suk Suh & Michael R. Furst & Kenneth J. Mihalyov & Olivier de Weck, 2010. "Technology infusion for complex systems: A framework and case study," Systems Engineering, John Wiley & Sons, vol. 13(2), pages 186-203, June.
  • Handle: RePEc:wly:syseng:v:13:y:2010:i:2:p:186-203
    DOI: 10.1002/sys.20142
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.20142
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.20142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rudolf Smaling & Olivier de Weck, 2007. "Assessing risks and opportunities of technology infusion in system design," Systems Engineering, John Wiley & Sons, vol. 10(1), pages 1-25, March.
    2. Avner Engel & Tyson R. Browning, 2008. "Designing systems for adaptability by means of architecture options," Systems Engineering, John Wiley & Sons, vol. 11(2), pages 125-146, June.
    3. Tyson R. Browning, 2002. "Process integration using the design structure matrix," Systems Engineering, John Wiley & Sons, vol. 5(3), pages 180-193.
    4. Meir Tahan & Joseph Z. Ben‐Asher, 2008. "Modeling and optimization of integration processes using dynamic programming," Systems Engineering, John Wiley & Sons, vol. 11(2), pages 165-185, June.
    5. Armin P. Schulz & Don P. Clausing & Ernst Fricke & Herbert Negele, 2000. "Development and integration of winning technologies as key to competitive advantage," Systems Engineering, John Wiley & Sons, vol. 3(4), pages 180-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eun Suk Suh & Noemi Chiriac & Katja Hölttä‐Otto, 2015. "Seeing Complex System through Different Lenses: Impact of Decomposition Perspective on System Architecture Analysis," Systems Engineering, John Wiley & Sons, vol. 18(3), pages 229-240, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eun Suk Suh & Noemi Chiriac & Katja Hölttä‐Otto, 2015. "Seeing Complex System through Different Lenses: Impact of Decomposition Perspective on System Architecture Analysis," Systems Engineering, John Wiley & Sons, vol. 18(3), pages 229-240, May.
    2. Rudolf Smaling & Olivier de Weck, 2007. "Assessing risks and opportunities of technology infusion in system design," Systems Engineering, John Wiley & Sons, vol. 10(1), pages 1-25, March.
    3. Morgan Dwyer & Bruce Cameron & Zoe Szajnfarber, 2015. "A Framework for Studying Cost Growth on Complex Acquisition Programs," Systems Engineering, John Wiley & Sons, vol. 18(6), pages 568-583, November.
    4. Durugbo, Christopher & Tiwari, Ashutosh & Alcock, Jeffrey R., 2013. "Modelling information flow for organisations: A review of approaches and future challenges," International Journal of Information Management, Elsevier, vol. 33(3), pages 597-610.
    5. Tyson R. Browning & Eric C. Honour, 2008. "Measuring the life‐cycle value of enduring systems," Systems Engineering, John Wiley & Sons, vol. 11(3), pages 187-202, September.
    6. Brian M. Kennedy & Durward K. Sobek & Michael N. Kennedy, 2014. "Reducing Rework by Applying Set‐Based Practices Early in the Systems Engineering Process," Systems Engineering, John Wiley & Sons, vol. 17(3), pages 278-296, September.
    7. Young‐Don Shin & Sang‐Hyun Sim & Jae‐Chon Lee, 2017. "Model‐Based Integration of Test and Evaluation Process and System Safety Process for Development of Safety‐Critical Weapon Systems," Systems Engineering, John Wiley & Sons, vol. 20(3), pages 257-279, May.
    8. Eckert, Claudia M. & Keller, René & Earl, Chris & Clarkson, P. John, 2006. "Supporting change processes in design: Complexity, prediction and reliability," Reliability Engineering and System Safety, Elsevier, vol. 91(12), pages 1521-1534.
    9. Peter Davison & Bruce Cameron & Edward F. Crawley, 2015. "Technology Portfolio Planning by Weighted Graph Analysis of System Architectures," Systems Engineering, John Wiley & Sons, vol. 18(1), pages 45-58, January.
    10. M. D. Guenov & S. G. Barker, 2005. "Application of axiomatic design and design structure matrix to the decomposition of engineering systems," Systems Engineering, John Wiley & Sons, vol. 8(1), pages 29-40.
    11. Sarah M. Bonzo & David McLain & Mark S. Avnet, 2016. "Process Modeling in the Operating Room: A Socio‐Technical Systems Perspective," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 267-277, May.
    12. Alberto Sols & Javier Romero & Robert Cloutier, 2012. "Performance‐based logistics and technology refreshment programs: Bridging the operational‐life performance capability gap in the Spanish F‐100 frigates," Systems Engineering, John Wiley & Sons, vol. 15(4), pages 422-432, December.
    13. Alessandro Golkar & Edward F. Crawley, 2014. "A Framework for Space Systems Architecture under Stakeholder Objectives Ambiguity," Systems Engineering, John Wiley & Sons, vol. 17(4), pages 479-502, December.
    14. Timothy D. Blackburn & Thomas A. Mazzuchi & Shahram Sarkani, 2012. "Using a TRIZ framework for systems engineering trade studies," Systems Engineering, John Wiley & Sons, vol. 15(3), pages 355-367, September.
    15. Tyson R. Browning & Ernst Fricke & Herbert Negele, 2006. "Key concepts in modeling product development processes," Systems Engineering, John Wiley & Sons, vol. 9(2), pages 104-128, June.
    16. Benedict Bender & Clementine Bertheau & Tim Körppen & Hannah Lauppe & Norbert Gronau, 2022. "A proposal for future data organization in enterprise systems—an analysis of established database approaches," Information Systems and e-Business Management, Springer, vol. 20(3), pages 441-494, September.
    17. Bahram Hamraz & Nicholas H. M. Caldwell & P. John Clarkson, 2013. "A Holistic Categorization Framework for Literature on Engineering Change Management," Systems Engineering, John Wiley & Sons, vol. 16(4), pages 473-505, December.
    18. Ali A. Yassine & Luke A. Wissmann, 2007. "The Implications of Product Architecture on the Firm," Systems Engineering, John Wiley & Sons, vol. 10(2), pages 118-137, June.
    19. Sungchul Kim & Ronald Giachetti & Sangsung Park, 2018. "Real Options Analysis for Acquisition of New Technology: A Case Study of Korea K2 Tank’s Powerpack," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    20. Daniel Stenholm & Daniel Corin Stig & Lars Ivansen & Dag Bergsjö, 2019. "A framework of practices supporting the reuse of technological knowledge," Environment Systems and Decisions, Springer, vol. 39(2), pages 128-145, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:13:y:2010:i:2:p:186-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.