IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v40y2020is1p2128-2136.html
   My bibliography  Save this article

Foundational Challenges for Advancing the Field and Discipline of Risk Analysis

Author

Listed:
  • Terje Aven
  • Roger Flage

Abstract

Risk analysis as a field and discipline is about concepts, principles, approaches, methods, and models for understanding, assessing, communicating, managing, and governing risk. The foundation of this field and discipline has been subject to continuous discussion since its origin some 40 years ago with the establishment of the Society for Risk Analysis and the Risk Analysis journal. This article provides a perspective on critical foundational challenges that this field and discipline faces today, for risk analysis to develop and have societal impact. Topics discussed include fundamental questions important for defining the risk field, discipline, and science; the multidisciplinary and interdisciplinary features of risk analysis; the interactions and dependencies with other sciences; terminology and fundamental principles; and current developments and trends, such as the use of artificial intelligence.

Suggested Citation

  • Terje Aven & Roger Flage, 2020. "Foundational Challenges for Advancing the Field and Discipline of Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2128-2136, November.
  • Handle: RePEc:wly:riskan:v:40:y:2020:i:s1:p:2128-2136
    DOI: 10.1111/risa.13496
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13496
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guikema, Seth D., 2009. "Natural disaster risk analysis for critical infrastructure systems: An approach based on statistical learning theory," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 855-860.
    2. Aven, Terje, 2015. "On the allegations that small risks are treated out of proportion to their importance," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 116-121.
    3. Terje Aven, 2018. "An Emerging New Risk Analysis Science: Foundations and Implications," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 876-888, May.
    4. Terje Aven, 2018. "Reflections on the Use of Conceptual Research in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2415-2423, November.
    5. Ortwin Renn & Klaus Lucas & Armin Haas & Carlo Jaeger, 2019. "Things are different today: the challenge of global systemic risks," Journal of Risk Research, Taylor & Francis Journals, vol. 22(4), pages 401-415, April.
    6. Seth Guikema, 2020. "Artificial Intelligence for Natural Hazards Risk Analysis: Potential, Challenges, and Research Needs," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1117-1123, June.
    7. Terje Aven, 2012. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1647-1656, October.
    8. Tsan‐Ming Choi & James H. Lambert, 2017. "Advances in Risk Analysis with Big Data," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1435-1442, August.
    9. Terje Aven, 2019. "The Call for a Shift from Risk to Resilience: What Does it Mean?," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1196-1203, June.
    10. Flage, R. & Aven, T., 2015. "Emerging risk – Conceptual definition and a relation to black swan type of events," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 61-67.
    11. Yacov Y. Haimes, 2009. "On the Complex Definition of Risk: A Systems‐Based Approach," Risk Analysis, John Wiley & Sons, vol. 29(12), pages 1647-1654, December.
    12. Sven Ove Hansson & Terje Aven, 2014. "Is Risk Analysis Scientific?," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1173-1183, July.
    13. Kimberly M. Thompson & Paul F. Deisler & Richard C. Schwing, 2005. "Interdisciplinary Vision: The First 25 Years of the Society for Risk Analysis (SRA), 1980–2005," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1333-1386, December.
    14. Terje Aven, 2017. "What Defines Us as Professionals in the Field of Risk Analysis?," Risk Analysis, John Wiley & Sons, vol. 37(5), pages 854-860, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cornwell, Nikki & Bilson, Christopher & Gepp, Adrian & Stern, Steven & Vanstone, Bruce J., 2023. "Modernising operational risk management in financial institutions via data-driven causal factors analysis: A pre-registered study," Pacific-Basin Finance Journal, Elsevier, vol. 79(C).
    2. Alessandro Mazzoccoli & Maurizio Naldi, 2022. "An Overview of Security Breach Probability Models," Risks, MDPI, vol. 10(11), pages 1-29, November.
    3. Tine Bizjak & Marco Capodiferro & Deepika Deepika & Öykü Dinçkol & Vazha Dzhedzheia & Lorena Lopez-Suarez & Ioannis Petridis & Agneta A. Runkel & Dayna R. Schultz & Branko Kontić, 2022. "Human Biomonitoring Data in Health Risk Assessments Published in Peer-Reviewed Journals between 2016 and 2021: Confronting Reality after a Preliminary Review," IJERPH, MDPI, vol. 19(6), pages 1-18, March.
    4. Bernhard Streicher & Moritz Bielefeld & Eric Eller, 2023. "The Risk Culture Framework: Introducing an Integrative Framework for Holistic Risk Analysis," SAGE Open, , vol. 13(3), pages 21582440231, August.
    5. Tine Bizjak & Davor Kontić & Branko Kontić, 2022. "Practical Opportunities to Improve the Impact of Health Risk Assessment on Environmental and Public Health Decisions," IJERPH, MDPI, vol. 19(7), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terje Aven, 2020. "Risk Science Contributions: Three Illustrating Examples," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1889-1899, October.
    2. Aven, Terje, 2018. "Perspectives on the nexus between good risk communication and high scientific risk analysis quality," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 290-296.
    3. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    4. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Henrik Hassel & Alexander Cedergren, 2019. "Exploring the Conceptual Foundation of Continuity Management in the Context of Societal Safety," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1503-1519, July.
    6. Aven, Terje & Kristensen, Vidar, 2019. "How the distinction between general knowledge and specific knowledge can improve the foundation and practice of risk assessment and risk-informed decision-making," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Young Jun Choi & Mi Sun Jeon, 2020. "How Business Interests and Government Inaction Led to the Humidifier Disinfectant Disaster in South Korea: Implications for Better Risk Governance," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 240-253, February.
    8. Terje Aven, 2013. "On the Meaning and Use of the Risk Appetite Concept," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 462-468, March.
    9. David J. Yu & Michael L. Schoon & Jason K. Hawes & Seungyoon Lee & Jeryang Park & P. Suresh C. Rao & Laura K. Siebeneck & Satish V. Ukkusuri, 2020. "Toward General Principles for Resilience Engineering," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1509-1537, August.
    10. Marshall, Alasdair & Ojiako, Udechukwu & Wang, Victoria & Lin, Fenfang & Chipulu, Maxwell, 2019. "Forecasting unknown-unknowns by boosting the risk radar within the risk intelligent organisation," International Journal of Forecasting, Elsevier, vol. 35(2), pages 644-658.
    11. Dominic Balog‐Way & Katherine McComas & John Besley, 2020. "The Evolving Field of Risk Communication," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2240-2262, November.
    12. Rani Lill Anjum & Elena Rocca, 2019. "From Ideal to Real Risk: Philosophy of Causation Meets Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 729-740, March.
    13. Terje Aven, 2018. "Reflections on the Use of Conceptual Research in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2415-2423, November.
    14. Massimo Andretta, 2014. "Some Considerations on the Definition of Risk Based on Concepts of Systems Theory and Probability," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1184-1195, July.
    15. Aven, Terje, 2021. "The reliability science: Its foundation and link to risk science and other sciences," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    17. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    18. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    19. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Mohammad Mojtahedi & Sidney Newton & Jason Meding, 2017. "Predicting the resilience of transport infrastructure to a natural disaster using Cox’s proportional hazards regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1119-1133, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:40:y:2020:i:s1:p:2128-2136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.