IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v36y2016i2p215-227.html
   My bibliography  Save this article

A QMRA for the Transmission of ESBL‐Producing Escherichia coli and Campylobacter from Poultry Farms to Humans Through Flies

Author

Listed:
  • Eric G. Evers
  • Hetty Blaak
  • Raditijo A. Hamidjaja
  • Rob de Jonge
  • Franciska M. Schets

Abstract

The public health significance of transmission of ESBL‐producing Escherichia coli and Campylobacter from poultry farms to humans through flies was investigated using a worst‐case risk model. Human exposure was modeled by the fraction of contaminated flies, the number of specific bacteria per fly, the number of flies leaving the poultry farm, and the number of positive poultry houses in the Netherlands. Simplified risk calculations for transmission through consumption of chicken fillet were used for comparison, in terms of the number of human exposures, the total human exposure, and, for Campylobacter only, the number of human cases of illness. Comparing estimates of the worst‐case risk of transmission through flies with estimates of the real risk of chicken fillet consumption, the number of human exposures to ESBL‐producing E. coli was higher for chicken fillet as compared with flies, but the total level of exposure was higher for flies. For Campylobacter, risk values were nearly consistently higher for transmission through flies than for chicken fillet consumption. This indicates that the public health risk of transmission of both ESBL‐producing E. coli and Campylobacter to humans through flies might be of importance. It justifies further modeling of transmission through flies for which additional data (fly emigration, human exposure) are required. Similar analyses of other environmental transmission routes from poultry farms are suggested to precede further investigations into flies.

Suggested Citation

  • Eric G. Evers & Hetty Blaak & Raditijo A. Hamidjaja & Rob de Jonge & Franciska M. Schets, 2016. "A QMRA for the Transmission of ESBL‐Producing Escherichia coli and Campylobacter from Poultry Farms to Humans Through Flies," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 215-227, February.
  • Handle: RePEc:wly:riskan:v:36:y:2016:i:2:p:215-227
    DOI: 10.1111/risa.12433
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12433
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maarten J. Nauta & Wilma F. Jacobs‐Reitsma & Arie H. Havelaar, 2007. "A Risk Assessment Model for Campylobacter in Broiler Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 845-861, August.
    2. P. F. M. Teunis & A. H. Havelaar, 2000. "The Beta Poisson Dose‐Response Model Is Not a Single‐Hit Model," Risk Analysis, John Wiley & Sons, vol. 20(4), pages 513-520, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sido D. Mylius & Maarten J. Nauta & Arie H. Havelaar, 2007. "Cross‐Contamination During Food Preparation: A Mechanistic Model Applied to Chicken‐Borne Campylobacter," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 803-813, August.
    2. Régis Pouillot & Benoit Garin & Noro Ravaonindrina & Kane Diop & Mahery Ratsitorahina & Domoina Ramanantsoa & Jocelyne Rocourt, 2012. "A Risk Assessment of Campylobacteriosis and Salmonellosis Linked to Chicken Meals Prepared in Households in Dakar, Senegal," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1798-1819, October.
    3. Eric G. Evers & Petra A. Berk & Mijke L. Horneman & Frans M. van Leusden & Rob de Jonge, 2014. "A Quantitative Microbiological Risk Assessment for Campylobacter in Petting Zoos," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1618-1638, September.
    4. A. H. Havelaar & A. N. Swart, 2014. "Impact of Acquired Immunity and Dose‐Dependent Probability of Illness on Quantitative Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(10), pages 1807-1819, October.
    5. Wopke van der Werf & Lia Hemerik & Just M Vlak & Mark P Zwart, 2011. "Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-15, June.
    6. Arie H. Havelaar & Marie‐Josee J. Mangen & Aline A. De Koeijer & Marc‐Jeroen Bogaardt & Eric G. Evers & Wilma F. Jacobs‐Reitsma & Wilfrid Van Pelt & Jaap A. Wagenaar & G. Ardine De Wit & Henk Van Der , 2007. "Effectiveness and Efficiency of Controlling Campylobacter on Broiler Chicken Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 831-844, August.
    7. Amie Adkin & Neil Donaldson & Louise Kelly, 2013. "A Quantitative Assessment of the Prion Risk Associated with Wastewater from Carcass‐Handling Facilities," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1212-1227, July.
    8. Elise Billoir & Jean‐Baptiste Denis & Natalie Commeau & Marie Cornu & Véronique Zuliani, 2011. "Probabilistic Modeling of the Fate of Listeria Monocytogenes in Diced Bacon During the Manufacturing Process," Risk Analysis, John Wiley & Sons, vol. 31(2), pages 237-254, February.
    9. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    10. Peter F. M. Teunis & Cynthia L. Chappell & Pablo C. Okhuysen, 2002. "Cryptosporidium Dose Response Studies: Variation Between Isolates," Risk Analysis, John Wiley & Sons, vol. 22(1), pages 175-185, February.
    11. Antti Mikkelä & Jukka Ranta & Manuel González & Marjaana Hakkinen & Pirkko Tuominen, 2016. "Campylobacter QMRA: A Bayesian Estimation of Prevalence and Concentration in Retail Foods Under Clustering and Heavy Censoring," Risk Analysis, John Wiley & Sons, vol. 36(11), pages 2065-2080, November.
    12. Ascioti, Fortunato A. & Mangano, Maria Cristina & Marcianò, Claudio & Sarà , Gianluca, 2022. "The sanitation service of seagrasses – Dependencies and implications for the estimation of avoided costs," Ecosystem Services, Elsevier, vol. 54(C).
    13. Arnout R. H. Fischer & Aarieke E. I. De Jong & Esther D. Van Asselt & Rob De Jonge & Lynn J. Frewer & Maarten J. Nauta, 2007. "Food Safety in the Domestic Environment: An Interdisciplinary Investigation of Microbial Hazards During Food Preparation," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1065-1082, August.
    14. Mary J. Bartholomew & David J. Vose & Linda R. Tollefson & Curtis C. Travis, 2005. "A Linear Model for Managing the Risk of Antimicrobial Resistance Originating in Food Animals," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 99-108, February.
    15. Jack Schijven & Martijn Bouwknegt & Ana Maria de Roda Husman & Saskia Rutjes & Bertrand Sudre & Jonathan E. Suk & Jan C. Semenza, 2013. "A Decision Support Tool to Compare Waterborne and Foodborne Infection and/or Illness Risks Associated with Climate Change," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2154-2167, December.
    16. Eric G. Evers & Martijn Bouwknegt, 2016. "Combining QMRA and Epidemiology to Estimate Campylobacteriosis Incidence," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1959-1968, October.
    17. Martijn Bouwknegt & Anne B. Knol & Jeroen P. van der Sluijs & Eric G. Evers, 2014. "Uncertainty of Population Risk Estimates for Pathogens Based on QMRA or Epidemiology: A Case Study of Campylobacter in the Netherlands," Risk Analysis, John Wiley & Sons, vol. 34(5), pages 847-864, May.
    18. Philip J. Schmidt & Katarina D. M. Pintar & Aamir M. Fazil & Edward Topp, 2013. "Harnessing the Theoretical Foundations of the Exponential and Beta‐Poisson Dose‐Response Models to Quantify Parameter Uncertainty Using Markov Chain Monte Carlo," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1677-1693, September.
    19. Sushil B. Tamrakar & Charles N. Haas, 2011. "Dose‐Response Model of Rocky Mountain Spotted Fever (RMSF) for Human," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1610-1621, October.
    20. Régis Pouillot & Véronique Goulet & Marie Laure Delignette‐Muller & Aurélie Mahé & Marie Cornu, 2009. "Quantitative Risk Assessment of Listeria monocytogenes in French Cold‐Smoked Salmon: II. Risk Characterization," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 806-819, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:36:y:2016:i:2:p:215-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.