IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011856.html
   My bibliography  Save this article

A beta-Poisson model for infectious disease transmission

Author

Listed:
  • Joe Hilton
  • Ian Hall

Abstract

Outbreaks of emerging and zoonotic infections represent a substantial threat to human health and well-being. These outbreaks tend to be characterised by highly stochastic transmission dynamics with intense variation in transmission potential between cases. The negative binomial distribution is commonly used as a model for transmission in the early stages of an epidemic as it has a natural interpretation as the convolution of a Poisson contact process and a gamma-distributed infectivity. In this study we expand upon the negative binomial model by introducing a beta-Poisson mixture model in which infectious individuals make contacts at the points of a Poisson process and then transmit infection along these contacts with a beta-distributed probability. We show that the negative binomial distribution is a limit case of this model, as is the zero-inflated Poisson distribution obtained by combining a Poisson-distributed contact process with an additional failure probability. We assess the beta-Poisson model’s applicability by fitting it to secondary case distributions (the distribution of the number of subsequent cases generated by a single case) estimated from outbreaks covering a range of pathogens and geographical settings. We find that while the beta-Poisson mixture can achieve a closer to fit to data than the negative binomial distribution, it is consistently outperformed by the negative binomial in terms of Akaike Information Criterion, making it a suboptimal choice on parsimonious grounds. The beta-Poisson performs similarly to the negative binomial model in its ability to capture features of the secondary case distribution such as overdispersion, prevalence of superspreaders, and the probability of a case generating zero subsequent cases. Despite this possible shortcoming, the beta-Poisson distribution may still be of interest in the context of intervention modelling since its structure allows for the simulation of measures which change contact structures while leaving individual-level infectivity unchanged, and vice-versa.Author summary: The early stages of epidemics are characterised by dramatic variations in the number of new cases generated by each infectious individual, with some cases generating no new infections and some “superspreading” cases generating disproportionately large numbers of subsequent cases. In this study we introduce a mathematical model based on a two-step interpretation of infectious disease transmission: infectious individuals make a random number of contacts according to some fixed contact distribution and then infect their contacts with an infection probability which is unique to that specific infectious individual. This model has the advantage of generalizing more commonly used models of early epidemic dynamics, while allowing for policy analyses which assess the impact of measures which impact social contact behaviour and infectiousness across contacts separately. We find that while our model performs at least as well as pre-existing models in modelling individual-level capacity to generate new infections, the extra mathematical complexity our model introduces is not justified by commonly-used measures of parsimony. This suggests that our model could be applicable in specific policy settings but does not offer a substantial improvement over past approaches in a purely observational setting.

Suggested Citation

  • Joe Hilton & Ian Hall, 2024. "A beta-Poisson model for infectious disease transmission," PLOS Computational Biology, Public Library of Science, vol. 20(2), pages 1-18, February.
  • Handle: RePEc:plo:pcbi00:1011856
    DOI: 10.1371/journal.pcbi.1011856
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011856
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011856&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James O Lloyd-Smith, 2007. "Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases," PLOS ONE, Public Library of Science, vol. 2(2), pages 1-8, February.
    2. Philip J. Schmidt & Katarina D. M. Pintar & Aamir M. Fazil & Edward Topp, 2013. "Harnessing the Theoretical Foundations of the Exponential and Beta‐Poisson Dose‐Response Models to Quantify Parameter Uncertainty Using Markov Chain Monte Carlo," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1677-1693, September.
    3. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    4. P. F. M. Teunis & A. H. Havelaar, 2000. "The Beta Poisson Dose‐Response Model Is Not a Single‐Hit Model," Risk Analysis, John Wiley & Sons, vol. 20(4), pages 513-520, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calvin Pozderac & Brian Skinner, 2021. "Superspreading of SARS-CoV-2 in the USA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-10, March.
    2. Yunjun Zhang & Yuying Li & Lu Wang & Mingyuan Li & Xiaohua Zhou, 2020. "Evaluating Transmission Heterogeneity and Super-Spreading Event of COVID-19 in a Metropolis of China," IJERPH, MDPI, vol. 17(10), pages 1-11, May.
    3. Seth Blumberg & James O Lloyd-Smith, 2013. "Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    4. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    5. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    6. repec:plo:pcbi00:1001058 is not listed on IDEAS
    7. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    8. Lazebnik, Teddy & Spiegel, Orr, 2025. "Individual variation affects outbreak magnitude and predictability in multi-pathogen model of pigeons visiting dairy farms," Ecological Modelling, Elsevier, vol. 499(C).
    9. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    10. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    11. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    12. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Maarten Jan Wensink & Linda Juel Ahrenfeldt & Sören Möller, 2020. "Variability Matters," IJERPH, MDPI, vol. 18(1), pages 1-8, December.
    14. Wopke van der Werf & Lia Hemerik & Just M Vlak & Mark P Zwart, 2011. "Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-15, June.
    15. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    16. Arie H. Havelaar & Marie‐Josee J. Mangen & Aline A. De Koeijer & Marc‐Jeroen Bogaardt & Eric G. Evers & Wilma F. Jacobs‐Reitsma & Wilfrid Van Pelt & Jaap A. Wagenaar & G. Ardine De Wit & Henk Van Der , 2007. "Effectiveness and Efficiency of Controlling Campylobacter on Broiler Chicken Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 831-844, August.
    17. Carolyn Ingram & Vicky Downey & Mark Roe & Yanbing Chen & Mary Archibald & Kadri-Ann Kallas & Jaspal Kumar & Peter Naughton & Cyril Onwuelazu Uteh & Alejandro Rojas-Chaves & Shibu Shrestha & Shiraz Sy, 2021. "COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    18. Eric G. Evers & Hetty Blaak & Raditijo A. Hamidjaja & Rob de Jonge & Franciska M. Schets, 2016. "A QMRA for the Transmission of ESBL‐Producing Escherichia coli and Campylobacter from Poultry Farms to Humans Through Flies," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 215-227, February.
    19. S. Towers & B. Amdouni & R. Cordova & K. Funderburk & C. Montalvo & M. Thakur & J. Velazquez-Molina & C. Castillo-Chavez, 2021. "The rising prevalence of weapons in unsafe arming configurations discovered in American airports," Journal of Transportation Security, Springer, vol. 14(1), pages 1-18, June.
    20. repec:plo:pone00:0046310 is not listed on IDEAS
    21. Wayne M. Getz & Jean-Paul Gonzalez & Richard Salter & James Bangura & Colin Carlson & Moinya Coomber & Eric Dougherty & David Kargbo & Nathan D. Wolfe & Nadia Wauquier, 2015. "Tactics and Strategies for Managing Ebola Outbreaks and the Salience of Immunization," Post-Print hal-01214432, HAL.
    22. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.