IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i10p3705-d362373.html
   My bibliography  Save this article

Evaluating Transmission Heterogeneity and Super-Spreading Event of COVID-19 in a Metropolis of China

Author

Listed:
  • Yunjun Zhang

    (Department of Biostatistics, School of Public Health, Peking University, Xueyuan Road, Beijing 100191, China
    These authors contributed equally to this work.)

  • Yuying Li

    (Department of Biostatistics, School of Public Health, Peking University, Xueyuan Road, Beijing 100191, China
    These authors contributed equally to this work.)

  • Lu Wang

    (Beijing International Center for Mathematical Research, Peking University, Yiheyuan Road, Beijing 100871, China)

  • Mingyuan Li

    (School of Mathematical Sciences, Peking University, Peking University, Yiheyuan Road, Beijing 100871, China)

  • Xiaohua Zhou

    (Department of Biostatistics, School of Public Health, Peking University, Xueyuan Road, Beijing 100191, China
    Beijing International Center for Mathematical Research, Peking University, Yiheyuan Road, Beijing 100871, China
    Center for Statistical Science, Peking University, Yiheyuan Road, Beijing 100871, China)

Abstract

COVID-19 caused rapid mass infection worldwide. Understanding its transmission characteristics, including heterogeneity and the emergence of super spreading events (SSEs) where certain individuals infect large numbers of secondary cases, is of vital importance for prediction and intervention of future epidemics. Here, we collected information of all infected cases (135 cases) between 21 January and 26 February 2020 from official public sources in Tianjin, a metropolis of China, and grouped them into 43 transmission chains with the largest chain of 45 cases and the longest chain of four generations. Utilizing a heterogeneous transmission model based on branching process along with a negative binomial offspring distribution, we estimated the reproductive number R and the dispersion parameter k (lower value indicating higher heterogeneity) to be 0.67 (95% CI: 0.54–0.84) and 0.25 (95% CI: 0.13–0.88), respectively. A super-spreader causing six infections was identified in Tianjin. In addition, our simulation allowing for heterogeneity showed that the outbreak in Tianjin would have caused 165 infections and sustained for 7.56 generations on average if no control measures had been taken by local government since 28 January. Our results highlighted more efforts are needed to verify the transmission heterogeneity of COVID-19 in other populations and its contributing factors.

Suggested Citation

  • Yunjun Zhang & Yuying Li & Lu Wang & Mingyuan Li & Xiaohua Zhou, 2020. "Evaluating Transmission Heterogeneity and Super-Spreading Event of COVID-19 in a Metropolis of China," IJERPH, MDPI, vol. 17(10), pages 1-11, May.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:10:p:3705-:d:362373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/10/3705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/10/3705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James O Lloyd-Smith, 2007. "Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases," PLOS ONE, Public Library of Science, vol. 2(2), pages 1-8, February.
    2. Seth Blumberg & James O Lloyd-Smith, 2013. "Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    3. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanbo Feng & Han Zhu & Xiwen Feng & Qianru Chen & Xiangyu Sun & Zhengrong Li, 2023. "Optimization of Dual-Design Operation Ventilation System Network Based on Improved Genetic Algorithm," Energies, MDPI, vol. 16(24), pages 1-15, December.
    2. Damon J A Toth & Alexander B Beams & Lindsay T Keegan & Yue Zhang & Tom Greene & Brian Orleans & Nathan Seegert & Adam Looney & Stephen C Alder & Matthew H Samore, 2021. "High variability in transmission of SARS-CoV-2 within households and implications for control," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calvin Pozderac & Brian Skinner, 2021. "Superspreading of SARS-CoV-2 in the USA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-10, March.
    2. Yuying Li & Taojun Hu & Xin Gai & Yunjun Zhang & Xiaohua Zhou, 2021. "Transmission Dynamics, Heterogeneity and Controllability of SARS-CoV-2: A Rural–Urban Comparison," IJERPH, MDPI, vol. 18(10), pages 1-10, May.
    3. Lingcai Kong & Jinfeng Wang & Zhongjie Li & Shengjie Lai & Qiyong Liu & Haixia Wu & Weizhong Yang, 2018. "Modeling the Heterogeneity of Dengue Transmission in a City," IJERPH, MDPI, vol. 15(6), pages 1-21, May.
    4. Seth Blumberg & James O Lloyd-Smith, 2013. "Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    5. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    6. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    7. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    8. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    9. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    10. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    11. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    12. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Maarten Jan Wensink & Linda Juel Ahrenfeldt & Sören Möller, 2020. "Variability Matters," IJERPH, MDPI, vol. 18(1), pages 1-8, December.
    14. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    15. Carolyn Ingram & Vicky Downey & Mark Roe & Yanbing Chen & Mary Archibald & Kadri-Ann Kallas & Jaspal Kumar & Peter Naughton & Cyril Onwuelazu Uteh & Alejandro Rojas-Chaves & Shibu Shrestha & Shiraz Sy, 2021. "COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    16. S. Towers & B. Amdouni & R. Cordova & K. Funderburk & C. Montalvo & M. Thakur & J. Velazquez-Molina & C. Castillo-Chavez, 2021. "The rising prevalence of weapons in unsafe arming configurations discovered in American airports," Journal of Transportation Security, Springer, vol. 14(1), pages 1-18, June.
    17. Wayne M. Getz & Jean-Paul Gonzalez & Richard Salter & James Bangura & Colin Carlson & Moinya Coomber & Eric Dougherty & David Kargbo & Nathan D. Wolfe & Nadia Wauquier, 2015. "Tactics and Strategies for Managing Ebola Outbreaks and the Salience of Immunization," Post-Print hal-01214432, HAL.
    18. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    19. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    20. Ellen Brooks-Pollock & Leon Danon & Hester Korthals Altes & Jennifer A Davidson & Andrew M T Pollock & Dick van Soolingen & Colin Campbell & Maeve K Lalor, 2020. "A model of tuberculosis clustering in low incidence countries reveals more transmission in the United Kingdom than the Netherlands between 2010 and 2015," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:10:p:3705-:d:362373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.